Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organic long persistent luminescence (OLPL) materials feature power law emission decay and minutes-/hours-long afterglow durations because of retarded charge recombination. Unlike conventional room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) afterglow, the emergence of OLPL must include a charge separation process in its photophysical mechanism; consequently, the reported OLPL examples are much fewer than conventional afterglow materials. The incorporation of an electron donor or acceptor is conceived to interact with the long-lived excited state in conventional afterglow system, aiming to induce charge separation. Here, the study first builds two-component RTP/TADF afterglow systems composed of difluoroboron β-diketonate (BFbdk) dopants and organic crystalline matrices, and then introduces an electron-donating component into the two-component BFbdk-matrix systems to enable the charge separation processes. The resultant three-component materials exhibit visible-light-excitable OLPL afterglow lasting for several hours under ambient condition. Leveraging the efficient harvesting of singlet/triplet excitons by BFbdk and the protective environment provided by the crystalline matrix, the three-component materials exhibit an estimated OLPL efficiency of ≈10% and display OLPL brightness comparable to inorganic SrAlO/Eu, Dy materials. Furthermore, the obtained OLPL materials show promising applications in afterglow displays and information storage, marking a significant step toward practical implementations of organic afterglow materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202501558 | DOI Listing |