Similar Publications

Strategic advances in C-OCF bond transformations.

Chem Commun (Camb)

September 2025

INSA Rouen Normandie, Univ Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN (UMR 6064), F-76000 Rouen, France.

While synthetic developments for the synthesis of trifluoromethoxylated arenes have flourished over the years, the cleavage of a C-OCF bond remains a niche topic and a synthetic challenge to overcome. This review provides an overview of major advances made in activating a strong aryl C-OCF bond, enabling C-C, C-H, and C-Heteroatom bond formations. These advances underscore the transformative potential of further developments in this emerging field.

View Article and Find Full Text PDF

Regioselective Dual Gold/Silver-Catalyzed C3-H Alkynylation of Triazolopyridazines.

Org Lett

September 2025

Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.

A regioselective C3-H alkynylation of triazolopyridazines has been achieved via dual gold/silver catalysis employing hypervalent iodine(III) reagents. The transformation proceeds through an alkynyl Au(III) intermediate and a silver-assisted C-H activation pathway, delivering a broad range of 3-alkynylated triazolopyridazines in good to excellent yields. Mechanistic studies, including H/D exchange experiments, reveal that the silver species plays a crucial role in facilitating C-H activation.

View Article and Find Full Text PDF

Eco-efficient C-H alkynylation of indoles mechanochemical ruthenium catalysis.

Org Biomol Chem

September 2025

Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.

A regioselective C2-alkynylation of indoles ruthenium(II)-catalyzed C-H activation using bromoalkynes is demonstrated under both solution-phase and mechanochemical conditions. The solvent-minimized mechanochemical method delivers comparable yields with reduced reaction time and improved green metrics. Broad substrate scope, gram-scale applicability, and post-functionalization showcase the synthetic utility of this approach.

View Article and Find Full Text PDF

Ultrastable Copper Cluster Enables Highly Site-Selective and Chemoselective Carbocation C(sp)-H and C(sp)-H Bonds Functionalization.

J Am Chem Soc

September 2025

State Key Laboratory of Antiviral Drugs, Tianjian Laboratory of Advanced Biomedical Sciences, Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

The C-H functionalization represents a universal and important method for constructing new C-C bonds by carrying out reactions directly on inert C-H bonds. The major challenges are to control the site-selectivity and chemoselectivity because most complex organic compounds have many similar C-H bonds or different functional groups, such as a C═C bond or O-H bond. Here, we develop a versatile copper cluster (CuNC) with high stability and dynamic catalytic sites.

View Article and Find Full Text PDF

Electrochemical Copper Catalysis: A Triple Catalytic System for Transient C(sp)-H Functionalization through Mediated Electrolysis.

ACS Electrochem

September 2025

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 0BZ, United Kingdom.

The development of copper-catalyzed C-H functionalization processes is challenging due to the inefficiency of conventional chemical oxidants in regenerating the copper catalyst. This study details the development of a mediated electrosynthetic approach involving triple catalytic cycles in transient C-H functionalization to achieve efficient copper-catalyzed C-(sp)-H sulfonylation of benzylamines with sodium sulfinate salts. The triple catalytic system consists of a copper organometallic cycle for C-H functionalization, an aldehyde transient directing group (TDG) as an organocatalyst for imine formation, and a ferrocenium salt as an electrocatalyst.

View Article and Find Full Text PDF