A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

[Full Life Cycle Assessment and Scenario Simulation of Plug-in Hybrid Electric Vehicles]. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To study the resource utilization and environmental impacts over the life cycle of plug-in hybrid electric vehicles (PHEV), this study employs a life cycle assessment (LCA) approach. It focuses on the Toyota Levin PHEV for inventory analysis, assessing material and fossil fuel consumption and the overall environmental footprint. Additionally, the study compares these impacts with those of battery electric vehicles (BEV) and hybrid electric vehicles (HEV), analyzing various factors such as operational conditions, battery wear, and mileage increments during usage. The research found that the extraction and utilization of metals like lithium and copper led to considerable consumption of material resources, with operational energy use being the major contributor to the vehicle's lifetime fossil fuel consumption. Scenarios of urban, highway, and aggressive driving suggest that BEVs maintain the lowest environmental and resource burden. The study further investigated the effect of battery capacity degradation to 90% and 85%, noting a heightened sensitivity in BEVs. Mileage increments of 10 000, 50 000, 100 000, and 150 000 km were analyzed under private and taxi usage scenarios, indicating a higher environmental and resource impact in BEVs and PHEVs under private usage when exceeding 50 000 km compared to that of HEVs and PHEVs used in taxis.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202405052DOI Listing

Publication Analysis

Top Keywords

life cycle
12
hybrid electric
12
electric vehicles
12
cycle assessment
8
plug-in hybrid
8
fossil fuel
8
fuel consumption
8
mileage increments
8
environmental resource
8
[full life
4

Similar Publications