Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The capability to profile the landscape of antigen-binding affinities of a vast number of antibodies (B cell receptors, BCRs) will provide a powerful tool to reveal biological insights. However, experimental approaches for detecting antibody-antigen interactions are costly and time-consuming and can only achieve low-to-mid throughput. In this work, we developed Cmai (contrastive modeling for antigen-antibody interactions) to address the prediction of binding between antibodies and antigens that can be scaled to high-throughput sequencing data. We devised a biomarker based on the output from Cmai to map the antigen-binding affinities of BCR repertoires. We found that the abundance of tumor antigen-targeting antibodies is predictive of immune-checkpoint inhibitor (ICI) treatment response. We also found that, during immune-related adverse events (irAEs) caused by ICI, humoral immunity is preferentially responsive to intracellular antigens from the organs affected by the irAEs. We used Cmai to construct a BCR-based irAE risk score, which predicted the timing of the occurrence of irAEs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43018-025-01001-5DOI Listing

Publication Analysis

Top Keywords

immune-checkpoint inhibitor
8
antigen-binding affinities
8
profiling antigen-binding
4
antigen-binding affinity
4
affinity cell
4
cell repertoires
4
repertoires tumors
4
tumors deep
4
deep learning
4
learning predicts
4

Similar Publications

(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are widely used in cancer therapy, yet diagnosing and managing immune-related adverse events (irAEs) remains challenging in clinical practice. Differences in healthcare structures between university hospitals (UH) and private practices (PP) influence irAE presentation and management, often excluding the latter from analyses.

Patients And Methods: This retrospective study included 604 cancer patients treated with ICIs between 2014 and 2023: 323 from UH and 281 from PP.

View Article and Find Full Text PDF

Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.

View Article and Find Full Text PDF

Concomitant Comedications and Survival With First-Line Pembrolizumab in Advanced Non-Small-Cell Lung Cancer.

JAMA Netw Open

September 2025

Oncostat U1018, Institut National de la Santé et de la Recherche Médicale (INSERM), Ligue Contre le Cancer, Paris-Saclay University, Villejuif, France.

Importance: Antibiotics, steroids, and proton pump inhibitors (PPIs) are suspected to decrease the efficacy of immunotherapy.

Objective: To explore the association of comedications with overall survival (OS) in patients with advanced non-small-cell lung cancer (NSCLC).

Design, Setting, And Participants: This nationwide retrospective cohort study used target trial emulations of patients newly diagnosed with NSCLC from January 2015 to December 2022, identified from the French national health care database.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are clinically beneficial but associated with high costs that represent a growing challenge for healthcare budgets and may affect affordability, especially in resource-limited settings. Moreover, the healthcare sector is a significant source of greenhouse gas emissions, and medication-related waste-such as that from vial-based therapies-has been identified as a contributing factor. Alternative dosing strategies could reduce the environmental and financial impact of ICI therapy while maintaining clinical safety and efficacy.

View Article and Find Full Text PDF