Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As mechanochemical synthesis has advanced significantly, there has been intense interest in understanding the underlying mechanisms of these reactions. Given that many mechanochemical processes are conducted in the solid-state without solvation yet sometimes yield faster reactions than those in solution, we sought to address the following question: Are mechanochemical reactions homo- or heterogeneous? To investigate, we employed a model system involving the mixing and copolymerization of l-lactide (LLA) and d-lactide (DLA), monitored through powder X-ray diffraction (PXRD), nuclear magnetic resonance, and differential scanning calorimetry. and PXRD analyses of the mixture of LLA and DLA showed that vibratory ball milling rapidly transformed the initially heterogeneous lactide mixture into a homogeneous phase within one min due to collisions between the balls and the jar. By varying the milling conditions, we were able to regulate the level of mixing, which subsequently influenced the copolymerization outcomes. In the solid-state ball-milling copolymerization of LLA and DLA in the presence of a catalyst and initiator, multiblock copolymers of poly-(l-lactic acid) and poly-(d-lactic acid) were formed within one min during the early stage of the reaction, when incomplete mixing of the monomers led to a process governed by phase heterogeneity. In contrast, prolonged polymerization promoted conditions approaching homogeneity, ultimately yielding atactic poly-(lactic acid). This transition from heterogeneous to homogeneous reactions is a distinctive feature compared to conventional homogeneous reactions, potentially leading to mechano-exclusive reaction designs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188479 | PMC |
http://dx.doi.org/10.1021/jacsau.5c00322 | DOI Listing |