A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Insights into Mechanochemical Solid-State Ball-Milling Reaction: Monitoring Transition from Heterogeneous to Homogeneous Conditions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As mechanochemical synthesis has advanced significantly, there has been intense interest in understanding the underlying mechanisms of these reactions. Given that many mechanochemical processes are conducted in the solid-state without solvation yet sometimes yield faster reactions than those in solution, we sought to address the following question: Are mechanochemical reactions homo- or heterogeneous? To investigate, we employed a model system involving the mixing and copolymerization of l-lactide (LLA) and d-lactide (DLA), monitored through powder X-ray diffraction (PXRD), nuclear magnetic resonance, and differential scanning calorimetry. and PXRD analyses of the mixture of LLA and DLA showed that vibratory ball milling rapidly transformed the initially heterogeneous lactide mixture into a homogeneous phase within one min due to collisions between the balls and the jar. By varying the milling conditions, we were able to regulate the level of mixing, which subsequently influenced the copolymerization outcomes. In the solid-state ball-milling copolymerization of LLA and DLA in the presence of a catalyst and initiator, multiblock copolymers of poly-(l-lactic acid) and poly-(d-lactic acid) were formed within one min during the early stage of the reaction, when incomplete mixing of the monomers led to a process governed by phase heterogeneity. In contrast, prolonged polymerization promoted conditions approaching homogeneity, ultimately yielding atactic poly-(lactic acid). This transition from heterogeneous to homogeneous reactions is a distinctive feature compared to conventional homogeneous reactions, potentially leading to mechano-exclusive reaction designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188479PMC
http://dx.doi.org/10.1021/jacsau.5c00322DOI Listing

Publication Analysis

Top Keywords

solid-state ball-milling
8
transition heterogeneous
8
heterogeneous homogeneous
8
lla dla
8
homogeneous reactions
8
reactions
5
insights mechanochemical
4
mechanochemical solid-state
4
ball-milling reaction
4
reaction monitoring
4

Similar Publications