A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Let's Go Bananas: Beyond Bounding Box Representations for Fisheye Camera-Based Object Detection in Autonomous Driving. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Object detection is a mature problem in autonomous driving, with pedestrian detection being one of the first commercially deployed algorithms. It has been extensively studied in the literature. However, object detection is relatively less explored for fisheye cameras used for surround-view near-field sensing. The standard bounding-box representation fails in fisheye cameras due to heavy radial distortion, particularly in the periphery. In this paper, a generic object detection framework is implemented using the base YOLO (You Only Look Once) detector to systematically explore various object representations using the public WoodScape dataset. First, we implement basic representations, namely the standard bounding box, the oriented bounding box, and the ellipse. Secondly, we implement a generic polygon and propose a novel curvature-adaptive polygon, which obtains an improvement of 3 mAP (mean average precision) points. A polygon is expensive to annotate and complex to use in downstream tasks; thus, it is not practical to use it in real-world applications. However, we utilize it to demonstrate that the accuracy gap between the polygon and the bounding box representation is very high due to strong distortion in fisheye cameras. This motivates the design of a distortion-aware optimal representation of the bounding box for fisheye images, which tend to be banana-shaped near the periphery. We derive a novel representation called a curved box and improve it further by leveraging vanishing-point constraints. The proposed curved box representations outperform the bounding box by 3 mAP points and the oriented bounding box by 1.6 mAP points. In addition, the camera geometry tensor is formulated to provide adaptation to non-linear fisheye camera distortion characteristics and improves the performance further by 1.4 mAP points.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196831PMC
http://dx.doi.org/10.3390/s25123735DOI Listing

Publication Analysis

Top Keywords

bounding box
28
object detection
16
fisheye cameras
12
map points
12
box
9
box representations
8
autonomous driving
8
oriented bounding
8
curved box
8
box map
8

Similar Publications