98%
921
2 minutes
20
: Currently, there is limited knowledge on the molecular mechanisms of the "non-canonical" Hippo signaling pathway in hematopoietic tumor cells. We have shown that targeting the MST1/2 kinases, which are the key molecules in this signaling pathway, may be an effective approach to the treatment of hematologic tumors. : The methods used in this study include cell growth assays, caspase assays, Western blot hybridizations, flow cytometry, and whole-transcriptome analyses. These methods allowed us to better understand the molecular pathways at play. : Our results showed that XMU-MP-1, an inhibitor of MST1/2 kinase, specifically reduces the viability of hematopoietic cancer cells but not breast cancer cells. It effectively inhibits the growth of the tumor B- and T-cell lines by blocking cell cycle progression, mainly during the G2/M phase, inducing apoptosis and autophagy. XMU-MP-1 treatment led to increased caspase 3/7 activity and increased levels of the cleaved PARP protein. Levels of the LC3-II protein were also shown to be increased, while the level of p62 decreased. These changes are associated with apoptosis and autophagy, respectively. RNA-seq analysis has demonstrated that XMU-MP-1 suppressed the expression of cell cycle regulators, such as E2F, and cell division cycle genes CDC6,7,20,25,45; cyclins A2,B1,B2, and cyclin-dependent kinases. At the same time, it increased the expression of genes involved in apoptosis, autophagy, and necroptosis. : Combinations of growth assays, caspase assays, Western blotting, and RNA-seq have shown that the dramatic reduction in the number of hematopoietic tumor cells after treatment with XMU-MP-1 is due to both cytostatic and cytotoxic effects. The use of MST1/2 kinase inhibitors could be highly promising for complex therapy of hematological tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196308 | PMC |
http://dx.doi.org/10.3390/ph18060874 | DOI Listing |
Sci Transl Med
September 2025
Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Nutrition Sciences, School of Health Larestan University of Medical Sciences Iran.
Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.
View Article and Find Full Text PDFCancer Biol Med
September 2025
Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, Yan'an Medical School of Yan'an University, Yan'an 716000, China.
The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction. Mitochondria exhibit characteristics, such as decreased oxidative phosphorylation efficiency, abnormal accumulation of reactive oxygen species in liver cancer and promoting tumor proliferation and drug resistance through the Warburg effect, as the core of energy metabolism and apoptosis regulation. Mutations in mitochondrial DNA (mtDNA) and dysregulation of mitochondrial autophagy (mitophagy) further enhance the invasive and metastatic capabilities of liver cancer.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address
While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.
View Article and Find Full Text PDF