Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cancer remains one of the leading causes of death worldwide. Therefore, the continuous development of effective therapeutic strategies is necessary. Conventional anticancer chemotherapy has low bioavailability and poor systemic distribution, resulting in serious side effects and limited therapeutic efficacy. To address these limitations, drug delivery systems that respond to external stimuli have been developed to release drugs at specific sites. In this study, a phase transition-based bubble-mediated emulsion system was developed to enable near-infrared (NIR)-induced drug release. This system consists of an oil phase, 2H,3H-perfluoropentane (PFC), a fluorinated liquid gas that evaporates at a certain temperature, and encapsulated IR-780 and paclitaxel to maintain stable microbubbles. Under NIR irradiation, IR-780 exhibits a photothermal conversion effect, which increases the temperature. Above the critical temperature, PFC undergoes a phase transition into gas, forming gas bubbles. This phase transition leads to a rapid volume expansion, destroys the microbubble structure, and triggers drug release. The NIR-responsive microbubble system developed in this study facilitated targeted and selective drug release through precise temperature control using the photothermal effects and phase transition. This system provides a novel platform to improve the efficacy of cancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194853 | PMC |
http://dx.doi.org/10.3390/ma18122725 | DOI Listing |