Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Shiga-toxin-producing (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we applied three WGS-based subtyping methods, high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multi-locus sequence typing using chromosome-associated loci [wgMLST (chrom)], and core genome multi-locus sequence typing (cgMLST), to isolate sequences from 11 STEC outbreaks. For each outbreak, we evaluated the concordance between subtyping methods using pairwise genomic differences (number of SNPs or alleles), linear regression models, and tanglegrams. Pairwise genomic differences were highly concordant between methods for all but one outbreak, which was associated with international travel. The slopes of the regressions for hqSNP vs. allele differences were 0.432 (cgMLST) and 0.966 wgMLST (chrom); the slope was 1.914 for cgMLST vs. wgMLST (chrom) differences. Tanglegrams comprised of outbreak and sporadic sequences showed moderate clustering concordance between methods, where Baker's Gamma Indices (BGIs) ranged between 0.35 and 0.99 and Cophenetic Correlation Coefficients (CCCs) were ≥0.88 across all outbreaks. The K-means analysis using the Silhouette method showed the clear separation of outbreak groups with average silhouette widths ≥0.87 across all methods. This study validates the use of cgMLST for the national surveillance of STEC illness clusters using the PulseNet 2.0 system and demonstrates that hqSNP or wgMLST can be used for further resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195096 | PMC |
http://dx.doi.org/10.3390/microorganisms13061310 | DOI Listing |