Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Arabic sign language (ArSL) is a visual-manual language which facilitates communication among Deaf people in the Arabic-speaking nations. Recognizing the ArSL is crucial due to variety of reasons, including its impact on the Deaf populace, education, healthcare, and society, as well. Previous approaches for the recognition of Arabic sign language have some limitations especially in terms of accuracy and their capability to capture the detailed features of the signs. To overcome these challenges, a new model is proposed namely DeepArabianSignNet, that incorporates DenseNet, EfficientNet and an attention-based Deep ResNet. This model uses a newly introduced G-TverskyUNet3+ to detect regions of interest in preprocessed Arabic sign language images. In addition, employing a novel metaheuristic algorithm, the Crisscross Seed Forest Optimization Algorithm, which combines the Crisscross Optimization and Forest Optimization algorithms to determine the best features from the extracted texture, color, and deep learning features. The proposed model is assessed using two databases, the variation of the training rate was 70% and 80%; Database 2 was exceptional, with an accuracy of 0.97675 for 70% of the training data and 0.98376 for 80%. The results presented in this paper prove that DeepArabianSignNet is effective in improving Arabic sign language recognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202802 | PMC |
http://dx.doi.org/10.1038/s41598-025-03560-0 | DOI Listing |