98%
921
2 minutes
20
Organoids can be used as an in vitro platform for studying tissue development and toxicology evaluation. While in vitro maturation of somatic and germ cells has been demonstrated in organoids, generating reproducible primary testicular cell-derived organoids for toxicity evaluation remains challenging. In this study, we developed testicular organoids using light-based 3D bioprinting of neonatal mouse primary testicular cells on transwell inserts. The bioprinting ink composition was specifically designed and optimized based on the extracellular matrix composition and mechanical properties of testicular tissue. The organoids were cultured for 21 days using an optimized medium to support testicular cell development and function. These bioprinted organoids recapitulated key features of the in vivo testicular architecture, forming tubule-like structures with cellular organization and gene expression profiles similar to native tissue. Following exposure to the known male reproductive toxic agent triptolide, testicular organoids showed loss of tight junction protein CLAUDIN-11 and altered transcript levels of somatic markers. Each bioprinted testicular organoid can be generated within 1 min, with toxicity evaluation results available within 1 month. This rapid turnaround makes it a promising high-throughput platform for toxicological studies, advancing our understanding of testicular development, function, and the impact of potential toxicants on male reproductive health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.5c00414 | DOI Listing |
Urologie
September 2025
Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.
Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).
View Article and Find Full Text PDFCurr Opin Urol
September 2025
Department of Urology.
Purpose Of Review: Infertility affects approximately 15% of couples, with male factors implicated in more than 50% of cases. Concerns over declining semen quality - evidenced by a more than 50% drop in sperm concentration over four decades - have triggered investigation into modifiable lifestyle and environmental factors. This review summarizes recent evidence on exposures that negatively impact male fertility.
View Article and Find Full Text PDFJTCVS Open
August 2025
Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minn.
Objectives: To describe the clinical presentation of patients with gonadal neuroendocrine tumors and carcinoid heart disease (CaHD) and to evaluate long-term outcomes following valvular surgery.
Methods: Retrospective review of patients with primary gonadal neuroendocrine tumor who were surgically treated for CaHD at our institution between 1990 and 2021.
Results: Eight patients (median age, 70 years) were included in the study, 7 with ovarian tumors and 1 with testicular tumor.
Am J Surg Pathol
September 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Embryonic-type neuroectodermal tumor (ENT; previously referred to as primitive neuroectodermal tumor, PNET) of the testis and gynecologic tract share morphologic features with small round blue cell tumors, including Ewing sarcoma (ES), yet are biologically, therapeutically, and prognostically distinct. The diagnosis of ENT can be challenging, and it is unclear if there are reliable biomarkers that can be used to confirm this diagnosis. This study characterized 50 ENTs arising from the testis (n=38) and gynecologic tract (n=12; 7 ovary/5 uterus) with 27 biomarkers (AE1/AE3, ATRX, CD99, chromogranin-A, Cyclin D1, Fli-1, GFAP, GLUT-1, IDH1/2, INSM1, MTAP, NANOG, Nestin, neurofilament, NKX2.
View Article and Find Full Text PDF