98%
921
2 minutes
20
Chronic inflammation is increasingly recognized as a driver of glioma progression, with tumor necrosis factor-alpha (TNF-α) playing a central role in modulating the tumor microenvironment. This study aimed to investigate the expression profiles and regulatory mechanisms of TNF-α and its downstream mediators-including interleukin-1 beta (IL-1β), Mitogen-Activated Protein Kinase Kinase Kinase 8 (MAP3K8), and Mitogen-activated protein kinase kinase (MAP2K7)-in astrocytic tumors of varying malignancy. We conducted an integrative molecular analysis of 60 human astrocytic tumor samples (20 G2, 12 G3, 28 G4) using transcriptomic microarrays, Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR), Enzyme-Linked Immunosorbent Assay (ELISA), Western blotting, immunohistochemistry, methylation-specific PCR, and miRNA profiling. Prognostic associations were evaluated using Kaplan-Meier survival and Cox regression analyses. TNF-α, IL-1β, and MAP3K8 were significantly upregulated in high-grade tumors, with log fold changes ranging from 5.56 to 8.76 ( < 0.001). High expression of TNF-α (HR = 2.10, 95% CI: 1.27-3.46, = 0.004), IL-1β (HR = 2.35, 95% CI: 1.45-3.82, = 0.001), and MAP3K8 (Hazard Ratio; HR = 1.88, 95% confidence interval; 95% CI: 1.12-3.16, = 0.015) was associated with poorer overall survival. miR-34a-3p and miR-30 family members, predicted to target TNF-α and IL-1β, were markedly downregulated in G3/G4 tumors (e.g., miR-30e-3p fold change: -3.78, < 0.01). Promoter hypomethylation was observed in G3/G4 tumors, supporting epigenetic activation. Our findings establish a multi-layered regulatory mechanism of TNF-α signaling in astrocytic tumors. These data highlight the TNF-α/IL-1β/MAP3K8 axis as a critical driver of glioma aggressiveness and a potential therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192942 | PMC |
http://dx.doi.org/10.3390/ijms26125892 | DOI Listing |
J Neurosurg Case Lessons
September 2025
Department of Neurosurgery, Fleming Neuroscience Institute, Allentown, Pennsylvania.
Background: High-grade astrocytoma with piloid features (HGAP) was recently added to the WHO 2021 CNS classification system among the group of circumscribed astrocytic gliomas. These tumors present with high-grade piloid histology with similarities to glioblastoma. HGAPs in the pineal region become particularly challenging due to its deep location and proximity to deep venous structures, the midbrain, and the thalamus.
View Article and Find Full Text PDFiScience
September 2025
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Hessen, Germany.
Efforts to efficiently target brain tumors are constrained by the dearth of appropriate models to study tumor behavior toward treatment approaches as well as potential side effects to the surrounding normal tissue. We established a reproducible cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing , a common oncogene in brain tumors. GFP/c-MYC cells were isolated from tumor organoids and used in two different approaches: GFP/c-MYC cells co-cultured with cerebral organoid slices or fused as spheres to whole organoids.
View Article and Find Full Text PDFNeurochem Res
September 2025
Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, Henan, China.
This study aims to investigate the role of Toll-like receptor 9 (TLR9), a deoxyribose nucleic acid (DNA) sensor, in astrocyte activation and its contribution to multiple sclerosis (MS) pathogenesis. Additionally, we examined whether TLR9 and the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathways act synergistically to promote astrocyte inflammatory activation and whether combined inhibition of both pathways offers superior protective effects. Human astrocytes were treated with unmethylated Cytosine-phosphorothioate-guanine (CpG) oligodeoxynucleotides at varying concentrations.
View Article and Find Full Text PDFNeuro Oncol
September 2025
Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
Background: Glioblastoma (GBM), the most aggressive adult brain cancer, comprises a complex tumour microenvironment (TME) with diverse cellular interactions that drive progression and pathobiology. The aim of this study was to understand how these spatial patterns and interactions evolve with treatment.
Methods: To explore these relationships, we employed imaging mass cytometry to measure the expression of 34 protein markers, enabling the identification of GBM-specific cell types and their interactions at single-cell protein level in paired primary (pre-treatment) and recurrent (post-treatment) GBM samples from five patients.
Cell Commun Signal
September 2025
CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
Background: Connexin (Cx) hemichannels (HCs) contribute to glioblastoma (GBM) progression by facilitating intercellular communication and releasing pro-tumorigenic molecules, including ATP and glutamate.
Methods: The efficacy of abEC1.1, a monoclonal antibody that inhibits Cx26, Cx30, and Cx32 HCs, was assessed in vitro by measuring invasion capability, dye and Ca uptake, glutamate and ATP release in patient-derived GBM cultures or organoids.