A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Apocynin Mitigates Diabetic Muscle Atrophy by Lowering Muscle Triglycerides and Oxidative Stress. | LitMetric

Apocynin Mitigates Diabetic Muscle Atrophy by Lowering Muscle Triglycerides and Oxidative Stress.

Int J Mol Sci

Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic muscular atrophy is a complication of diabetes mellitus that can decrease quality of life. Its complex mechanisms include alterations in proteolytic pathways, oxidative stress, and intracellular lipid accumulation. NADPH oxidase enzymes (NOX) play a key role in the production of ROS, contributing to oxidative damage and insulin resistance. Apocynin, a NOX inhibitor, has antioxidant and anti-inflammatory effects, suggesting its therapeutic potential in various diabetic complications. This study evaluated the impact of apocynin on the mechanisms of muscle atrophy in slow- and fast-twitch muscles of diabetic rats. Diabetes was induced in male Wistar rats by intraperitoneal injection of a single dose of streptozotocin (60 mg/kg). Apocynin treatment (3 mg/kg/day) was administered for 8 weeks. Fasting blood glucose levels, lipid profile, and weight gain were measured. Both slow-twitch (soleus) and fast-twitch (extensor digitorum longus, EDL) skeletal muscles were weighed and used to assess triglycerides (TG) content, histological analysis, lipid peroxidation levels, and gene expression evaluated by qRT-PCR. Apocynin reduced blood glucose levels, improved body weight, and exhibited hypolipidemic effects. It significantly increased muscle weight in EDL and soleus, especially in EDL muscle, lowering triglycerides, lipid peroxidation, and increasing fiber size. Additionally, it decreased mRNA expression levels of MuRF-1, atrogin-1, myostatin and p47phox mRNA and upregulated PGC-1α and follistatin mRNA. Apocynin exerted a myoprotective effect by mitigating muscle atrophy in diabetic rats. Its effects were differentially mediated on TG accumulation and muscle fiber size, reducing oxidative stress, atrogene expression, and positively regulating PGC-1α.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193051PMC
http://dx.doi.org/10.3390/ijms26125636DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
12
oxidative stress
12
diabetic rats
8
blood glucose
8
glucose levels
8
lipid peroxidation
8
fiber size
8
muscle
7
apocynin
6
diabetic
5

Similar Publications