98%
921
2 minutes
20
A key virtue of spin qubits is their sub-micron footprint, enabling a single silicon chip to host the millions of qubits required to execute useful quantum algorithms with error correction. However, with each physical qubit needing multiple control lines, a fundamental barrier to scale is the extreme density of connections that bridge quantum devices to their external control and readout hardware. A promising solution is to co-locate the control system proximal to the qubit platform at milli-kelvin temperatures, wired up by miniaturized interconnects. Even so, heat and crosstalk from closely integrated control have the potential to degrade qubit performance, particularly for two-qubit entangling gates based on exchange coupling that are sensitive to electrical noise. Here we benchmark silicon metal-oxide-semiconductor (MOS)-style electron spin qubits controlled by heterogeneously integrated cryo-complementary metal-oxide-semiconductor (cryo-CMOS) circuits with a power density sufficiently low to enable scale-up. Demonstrating that cryo-CMOS can efficiently perform universal logic operations for spin qubits, we go on to show that milli-kelvin control has little impact on the performance of single- and two-qubit gates. Given the complexity of our sub-kelvin CMOS platform, with about 100,000 transistors, these results open the prospect of scalable control based on the tight packaging of spin qubits with a 'chiplet-style' control architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240860 | PMC |
http://dx.doi.org/10.1038/s41586-025-09157-x | DOI Listing |
Nat Commun
September 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
Simulating non-Markovian open quantum dynamics is crucial for understanding complex quantum systems, yet it poses significant challenges for standard quantum hardware. These challenges stem from the non-Hermitian nature of such dynamics, which results in nonunitary evolution, as well as constraints imposed by limited quantum resources. To address this, we propose a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in systems coupled to non-Markovian environments.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Here, we present an all-electrical readout mechanism for quasi-0D quantum states (0D-QS), such as point defects, adatoms, and molecules, that is modular and general, providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multilayer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target system in an MLG/hBN/0D-QS/hBN/MLG heterostructure. This structure allows for all-electronic spectroscopy and readout of candidate systems through a combination of coulomb and spin-blockade.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry, University College London Christopher Ingold Building WC1H 0AJ UK
Emissive organic radicals are currently of great interest for their potential use in the next generation of highly efficient organic light emitting diode (OLED) devices and as molecular qubits. However, simulating their optoelectronic properties is challenging, largely due to spin-contamination and the multiconfigurational character of their excited states. Here we present a data-driven approach where, for the first time, the excited electronic states of organic radicals are learned directly from experimental excited state data, using a much smaller amount of data than typically required by Machine Learning.
View Article and Find Full Text PDF