98%
921
2 minutes
20
Forest structural change driven by climate trends has been observed worldwide and is expected to increase in the future. Management of forest structure has been an important tool for mitigating the impacts of climate change but forest structure may shift independently of management goals as it interacts with climate change. Here, we investigated the long-term impacts of harvest-based management strategies on structure and resistance to climate-induced biomass loss using a process-based ecosystem model for a midwestern USA hardwood forest. We identified aboveground biomass loss events and compared the cumulative number of these events following a five-year period of active management under four management strategies and two climate change scenarios. Management legacy had the clearest impact on climate-driven biomass loss over the mid-term (∼25 years) with the shelterwood scenario experiencing no loss events during this period. However, by the end of the century legacy effects faded and climate change severity became the driver of differences as greater warming scenarios experienced twice the loss events, and end-of-century loss events were 3-10 times more frequent than mid-century events. We found that while structure was distinct among harvest scenarios through the mid-century, differences were negligible by the end-of-century; identical to when management correlated with loss event frequency. We found that loss events were preceded by a drop in precipitation two years prior, while no specific forest structure preceded a loss event. However, the structures preceding a biomass loss event were distinct across different legacies, implying additional influences of past management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2025.126272 | DOI Listing |
Glob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFFront Reprod Health
August 2025
Department of Social Care and Social Work, Manchester Metropolitan University, Manchester, United Kingdom.
The climate crisis jeopardizes human health and is one of the greatest threats to reproductive autonomy and human rights. Witnessing these threats, the Sexual and Reproductive Health and Rights and Climate Justice Coalition was formed in 2021 to advocate on the intersections between climate change and sexual and reproductive health, rights, and justice (SRHRJ). The Coalition's purpose is to leverage intersectional approaches to influence global and national policies, programs, and funding mechanisms to advance climate justice, gender equality, and human rights.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States.
The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.
View Article and Find Full Text PDFWellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFAlpha Psychiatry
August 2025
Department of Mental Health, North West Tuscany Local Health Authority, 57023 Cecina, Italy.