98%
921
2 minutes
20
Vasoactive intestinal polypeptide-expressing inhibitory interneurons (VIP-INs) in the adult barrel cortex are crucial for mediating active whisking (AW) by disinhibiting pyramidal neurons. Past studies have investigated the development of VIP-IN network integration, focusing mainly on the excitatory network or the postsynaptic side of the inhibitory network. Hence, we aimed to explore the inhibitory network integration of VIP-INs, concentrating on the presynaptic side. We addressed this by investigating VIP-INs in three different age groups (postnatal day (P)8-P10, P14-P16, and P30-P36) in Vip-IRES-cre x tdTomato mice with whole-cell patch clamp recordings. By placing a stimulation electrode into L4 of the barrel field, we elicited electrically-evoked inhibitory postsynaptic currents (eIPSCs) in L2/3 VIP-INs following a high-frequency stimulation. We then analysed recorded eIPSCs by applying the binomial model of synaptic transmission. Our results show significant increases in both the number of readily-releasable vesicles and the presynaptic release probability between P9 and P15, suggesting that the inhibitory network integration is at least partially conducted via a presynaptic functional maturation. Despite an increase in the release probability, synaptic depression is decreased at P30-P36 due to an accelerated vesicle replenishment rate within the same time window. Lastly, asynchronous vesicle release decreases in favour of a stimulus-locked signal transmission by P30-P36. Our results suggest a maturation of the inhibitory projections towards a strong, precise, and stimulus-locked inhibition. This can be physiologically relevant to define the temporal precision of AW at the relevant frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310910 | PMC |
http://dx.doi.org/10.1007/s00424-025-03101-8 | DOI Listing |
Bioinformatics
September 2025
Centre National de Recherche en Génomique Humaine, Institut François Jacob CEA Université Paris-Saclay.
Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.
View Article and Find Full Text PDFJ Thorac Oncol
July 2025
Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
Introduction: TNM staging systems create prognostic categories by anatomic extent of disease. Whether therapeutically important molecular alterations in NSCLC augment the prognostic information of TNM staging is unclear. To study this, we analyzed molecular data from the ninth edition of the lung cancer staging system.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
mBio
September 2025
Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.
View Article and Find Full Text PDFmSystems
September 2025
Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Genome-scale metabolic models (GEMs) are widely used in systems biology to investigate metabolism and predict perturbation responses. Automatic GEM reconstruction tools generate GEMs with different properties and predictive capacities for the same organism. Since different models can excel at different tasks, combining them can increase metabolic network certainty and enhance model performance.
View Article and Find Full Text PDF