Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The efficient and non-invasive collection of biological samples has become a critical challenge for the continued development of surface-enhanced Raman scattering (SERS). When integrated with minimally invasive microneedle (MN) sampling technology, SERS enhances its applicability in real-time, non-invasive molecular detection. This review focuses on the latest advances in MN-based SERS sensors. Firstly, a comprehensive summary is presented of MN types and research progress in the design and engineering of SERS-active MNs. Then, the sampling method of SERS MNs and the MN-based SERS detection mode are also described in detail. Finally, the applications of SERS MNs in fields such as disease diagnosis, drug monitoring, and food safety are highlighted. Additionally, current challenges are discussed and future development prospects are prospected with the aim of contributing to the design of MN-based SERS sensors for diverse applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190841 | PMC |
http://dx.doi.org/10.3390/bios15060350 | DOI Listing |