Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Single-photon emitters (SPEs) are crucial in quantum communication and information processing. In 2D transition metal dichalcogenides (TMDs), SPEs are realized through inhomogeneous strain, while in combination with 2D magnets, a high spontaneous out-of-plane magnetization can be induced due to proximity effects. Here, an alternative is proposed that consists of suspending a TMD monolayer (WSe) on a few-layer antiferromagnet (CrSBr) with in-plane magnetic ordering. The resulting heterostructure exhibits localization centers at lower energies than expected. Among them, a bright SPE with a high degree of polarization selection is identified. This suffers a clear energy shift driven by an in-plane magnetic field, and interestingly, this shift is correlated with the metamagnetic transition of CrSBr, suggesting a new kind of proximity-type effect. Unlike regular SPEs in WSe (sensitive to out-of-plane magnetic fields), our SPE demonstrates sensitivity to both in-plane and out-of-plane magnetic fields. The added tunability at significantly lower fields offers a promising direction for developing magnetically responsive quantum emitters, paving the way for more practical applications in quantum technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183727 | PMC |
http://dx.doi.org/10.1021/acsphotonics.5c00144 | DOI Listing |