98%
921
2 minutes
20
Phenotypic plasticity contributes significantly to treatment failure in many cancers. Despite the increased prevalence of experimental studies that interrogate this phenomenon, there remains a lack of applicable quantitative tools to characterise data, and importantly to distinguish between resistance as a discrete phenotype and a continuous distribution of phenotypes. To address this, we develop a stochastic individual-based model of plastic phenotype adaptation through a continuously-structured phenotype space in low-cell-count proliferation assays. That our model corresponds probabilistically to common partial differential equation models of resistance allows us to formulate a likelihood that captures the intrinsic noise ubiquitous to such experiments. We apply our framework to assess the identifiability of key model parameters in several population-level data collection regimes; in particular, parameters relating to the adaptation velocity and cell-to-cell heterogeneity. Significantly, we find that cell-to-cell heterogeneity is practically non-identifiable from both cell count and proliferation marker data, implying that population-level behaviours may be well characterised by homogeneous ordinary differential equation models. Additionally, we demonstrate that population-level data are insufficient to distinguish resistance as a discrete phenotype from a continuous distribution of phenotypes. Our results inform the design of both future experiments and future quantitative analyses that probe phenotypic plasticity in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204626 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1013202 | DOI Listing |
Front Plant Sci
August 2025
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.
View Article and Find Full Text PDFAllergy
September 2025
Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.
Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.
View Article and Find Full Text PDFAm J Bot
September 2025
Research Unit Modeling Nature, Universidad de Granada, Granada.
Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.
A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
GFZ Helmholtz Centre for Geosciences, Potsdam, Germany.
Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.
View Article and Find Full Text PDF