A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Towards a robust approach to infer causality from molecular dynamics simulations. | LitMetric

Towards a robust approach to infer causality from molecular dynamics simulations.

J Chem Phys

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability to distinguish between correlation and causation of variables in molecular systems remains an interesting and open area of investigation. In this work, we probe causality in a molecular system using two independent computational methods that infer the causal direction through the language of information transfer. Specifically, we demonstrate that a molecular dynamics simulation involving a single tryptophan in liquid water displays asymmetric information transfer between specific collective variables, such as solute and solvent coordinates. Analyzing a discrete Markov-state and Langevin dynamics on a 2D free energy surface, we show that the same kind of asymmetries can emerge even in extremely simple systems undergoing equilibrium and time-reversible dynamics. We use these model systems to rationalize the unidirectional information transfer in the molecular system in terms of asymmetries in the underlying free energy landscape and/or relaxation dynamics of the relevant coordinates. Finally, we propose a computational experiment that allows one to decide if an asymmetric information transfer between two variables corresponds to a genuine causal link.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0267926DOI Listing

Publication Analysis

Top Keywords

causality molecular
8
molecular dynamics
8
molecular system
8
asymmetric transfer
8
free energy
8
molecular
5
dynamics
5
robust approach
4
approach infer
4
infer causality
4

Similar Publications