A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Life Detection Knowledge Base: A Community Tool for Knowledge Management and Representation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Life Detection Knowledge Base (LDKB; https://lifedetectionforum.com/ldkb) is a community-owned web resource that is designed to facilitate the infusion of astrobiology knowledge and expertise into the conceptualization and design of life detection missions. The aim of the LDKB is to gather and organize diverse knowledge from a range of fields into a common reference frame to support mission science risk assessment, specifically in terms of the potential for false positive and false negative results when pursuing a particular observation strategy. Within the LDKB, knowledge sourced from the primary scientific literature is organized according to (1) a taxonomic classification scheme in which potential biosignatures are defined at a uniform level of granularity that corresponds to observable physical or chemical quantities, qualities, or states; (2) a set of four standard assessment criteria, uniformly applied to each potential biosignature, that target the factors that contribute to false positive and false negative potential; and (3) a discourse format that utilizes customizable, user-defined "arguments" to represent the essential aspects of relevant scientific literature in terms of their specific bearing on one of the four assessment criteria, and thereby on false positive and false negative potential. By mapping available and newly emerging knowledge into this standardized framework, we can identify areas where the current state of knowledge supports a well-informed science risk assessment as well as critical knowledge gaps where focused research could help flesh out and mature promising life detection approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ast.2024.0106DOI Listing

Publication Analysis

Top Keywords

life detection
16
false positive
12
positive false
12
false negative
12
knowledge
9
detection knowledge
8
knowledge base
8
science risk
8
risk assessment
8
scientific literature
8

Similar Publications