A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A scalable neural network emulator with MRAM-based mixed-signal circuits. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we present a mixed-signal framework that utilizes MRAM (Magneto-resistive Random Access Memory) technology to emulate behaviors observed in biological neural networks on silicon substrates. While modern technology increasingly draws inspiration from biological neural networks, fully understanding these complex systems remains a significant challenge. Our framework integrates multi-bit MRAM synapse arrays and analog circuits to replicate essential neural functions, including Leaky Integrate and Fire (LIF) dynamics, Excitatory and Inhibitory Postsynaptic Potentials (EPSP and IPSP), the refractory period, and the lateral inhibition. A key challenge in using MRAM for neuromorphic systems is its low on/off resistance ratio, which limits the accuracy of current-mode analog computation. To overcome this, we introduce a current subtraction architecture that reliably generates multi-level synaptic currents based on MRAM states. This enables robust analog neural processing while preserving MRAM's advantages, such as non-volatility and CMOS compatibility. The chip's adjustable operating frequency allows it to replicate biologically realistic time scales as well as accelerate experimental processes. Experimental results from fabricated chips confirm the successful emulation of biologically inspired neural dynamics, demonstrating the feasibility of MRAM-based analog neuromorphic computation for real-time and scalable neural emulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183957PMC
http://dx.doi.org/10.3389/fnins.2025.1599144DOI Listing

Publication Analysis

Top Keywords

scalable neural
8
biological neural
8
neural networks
8
neural
6
neural network
4
network emulator
4
emulator mram-based
4
mram-based mixed-signal
4
mixed-signal circuits
4
circuits study
4

Similar Publications