98%
921
2 minutes
20
Background: Despite increasing in vitro research, direct evidence of how abnormal α-synuclein (α-Syn) dysregulates vesicular transport and synaptic function in the human brain is lacking.
Methods: We performed a transcriptome analysis using brain tissues from a multiple system atrophy (MSA) mouse model, which develops human α-Syn-positive glial cytoplasmic inclusion-like structures and neuronal cytoplasmic inclusion-like structures after tamoxifen injection. We then performed histologic and biochemical analyses using brain samples from 71 human cases (Parkinson's disease, n = 10; dementia with Lewy bodies [DLB], n = 19; MSA, n = 15; control: n = 27), a human blood sample (control: n = 1), and cultured cells.
Results: Based on the transcriptome of the MSA mouse model, we identified 10 vesicular transport proteins, including synaptotagmin 13 (SYT13), that might interact with α-Syn. Immunohistochemistry using human brain samples demonstrated that of the 10 vesicular transport proteins identified in the transcriptome analysis, only SYT13 was incorporated into both Lewy bodies and glial cytoplasmic inclusions. Proximity ligation assays revealed that SYT13 exhibited a higher degree of interactions with phosphorylated α-Syn than with endogenous α-Syn. Immunoprecipitation confirmed that SYT13 bound predominantly to phosphorylated α-Syn, SYT1, and the soluble N-ethylmaleimide-sensitive attachment protein receptor (SNARE) complexes. Filter trap assays revealed interactions between SYT13 and soluble toxic β-sheet-rich α-Syn oligomers. Furthermore, fraction analysis showed a significant increase of SYT13 protein levels at the synapses in DLB and MSA. Notably, a correlation was observed between the levels of SYT13 and aggregated α-Syn at the synapses. SYT13 was observed to regulate extracellular vesicle release in association with SYT1 and the SNARE complexes in SH-SY5Y cells. SYT13 overexpression in SH-SY5Y cells impaired extracellular vesicle release. Consistently, the numbers of extracellular vesicles were significantly reduced in the brain homogenates of DLB and MSA cases compared with those in controls.
Conclusions: Abnormal α-Syn impairs extracellular vesicle release through interactions with SYT13 in synucleinopathies. Our findings provide insights into therapeutic strategies for alleviating dysregulations of vesicular transport and synaptic function in patients with synucleinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183919 | PMC |
http://dx.doi.org/10.1186/s40035-025-00493-6 | DOI Listing |
Int J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFEpigenomics
September 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.
View Article and Find Full Text PDFActa Neuropathol Commun
September 2025
Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, 05029, Republic of Korea.
Cancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFOncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDF