Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AMPA-type ionotropic glutamate receptors (AMPARs) are integral to fast excitatory synaptic transmission and have vital roles in synaptic plasticity, motor coordination, learning and memory. Whereas extensive structural studies have been conducted on recombinant AMPARs and native calcium-impermeable (CI)-AMPARs alongside their auxiliary proteins, the molecular architecture of native calcium-permeable (CP)-AMPARs has remained undefined. Here, to determine the subunit composition, physiological architecture and gating mechanisms of CP-AMPARs, we visualize these receptors, immunoaffinity purified from rat cerebella, and resolve their structures using cryo-electron microscopy (cryo-EM). Our results indicate that the predominant assembly consists of GluA1 and GluA4 subunits, with the GluA4 subunit occupying the B and D positions, and auxiliary subunits, including transmembrane AMPAR regulatory proteins (TARPs) located at the B' and D' positions, and cornichon homologues (CNIHs) or TARPs located at the A' and C' positions. Furthermore, we resolved the structure of the noelin (NOE1)-GluA1-GluA4 complex, in which NOE1 specifically binds to the GluA4 subunit at the B and D positions. Notably, NOE1 stabilizes the amino-terminal domain layer without affecting gating properties of the receptor. NOE1 contributes to AMPAR function by forming dimeric AMPAR assemblies that are likely to engage in extracellular networks, clustering receptors in synaptic environments and modulating receptor responsiveness to synaptic inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-025-09289-0DOI Listing

Publication Analysis

Top Keywords

glua4 subunit
8
tarps located
8
located positions
8
gating noelin
4
noelin clustering
4
clustering native
4
native ca-permeable
4
ca-permeable ampa
4
receptors
4
ampa receptors
4

Similar Publications

Mutations in are the primary genetic cause of Phelan-McDermid Syndrome (PMS), a neurodevelopmental disorder frequently comorbid with autism spectrum disorder (ASD). As a key scaffolding protein in the postsynaptic site, SHANK3 is critical for excitatory glutamatergic synapse function by interacting with AMPARs, NMDARs, and mGluRs. While deficiency has been extensively studied in forebrain regions, its role in the cerebellum, a brain area increasingly implicated in ASD pathobiology, remains comparatively underexplored.

View Article and Find Full Text PDF

AMPA-subtype glutamate receptors (AMPARs), composed of subunits GluA1-4, mediate fast, excitatory synaptic transmission in the brain. After glutamate binding, AMPAR ion channels exhibit multiple subconductance states that tune neuronal responses to glutamate. GluA4 is the rarest subunit in the brain but is enriched in interneurons.

View Article and Find Full Text PDF

AMPA-type ionotropic glutamate receptors (AMPARs) are integral to fast excitatory synaptic transmission and have vital roles in synaptic plasticity, motor coordination, learning and memory. Whereas extensive structural studies have been conducted on recombinant AMPARs and native calcium-impermeable (CI)-AMPARs alongside their auxiliary proteins, the molecular architecture of native calcium-permeable (CP)-AMPARs has remained undefined. Here, to determine the subunit composition, physiological architecture and gating mechanisms of CP-AMPARs, we visualize these receptors, immunoaffinity purified from rat cerebella, and resolve their structures using cryo-electron microscopy (cryo-EM).

View Article and Find Full Text PDF

AMPA-type glutamate receptors (AMPARs) mediate excitatory cochlear transmission. However, unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 ( ) in male mice reduced cochlear output by 8 postnatal weeks.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is initially characterized by myelin and axonal damage in central nervous system white matter lesions, but their causal role in synapse loss remains undefined. Gray matter atrophy is also present early in MS, making it unclear if synaptic alterations are driven by white matter demyelinating lesions or primary gray matter damage. Furthermore, whether axonal pathology occurs secondary to or independent of demyelination to drive synaptic changes is not clear.

View Article and Find Full Text PDF