Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Piperine (PRN) is a water-insoluble alkaloidal drug reported for different biological activities. As part of this study, Kollidone VA64 (KLD) and Soluplus (SLP) were used as carriers to develop piperine solid dispersions (PRN SDs) to enhance their solubility. The stability constant of the drug-polymer composition was determined by the phase solubility study. PRN SDs were evaluated for dissolution and saturation solubility studies to select the optimized composition. SDs were evaluated for drug-polymer compatibility by Infra-red and nuclear magnetic spectroscopy. The drug crystallinity was evaluated by scanning electron microscopy and X-Ray diffraction method. Finally, a comparative cell viability assay was performed on the breast cancer cell line. The ternary system (PRN-KLD-SLP) depicted a significantly ( < 0.05) higher stability constant value than the binary system [PRN-KLD; (2.1 folds) and PRN-SLP (2.5-folds)]. An enhanced drug release (about 1.4-folds) was found from the ternary PRN SDs (F7-F9) than binary PRN SDs (F1-F6) and free PRN. The spectral analysis and molecular docking results confirm the formation of stable SDs. SEM and XRD results revealed conversion of crystalline PRN into an amorphous form. Cell viability data demonstrated a higher viability assay than the free PRN. Based on the study, we can say that the formation of ternary solid dispersion makes PRN more soluble and shows a better dissolution rate than the binary SDs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2025.2511997DOI Listing

Publication Analysis

Top Keywords

kollidone va64
8
cell viability
8
viability assay
8
prn sds
8
sds evaluated
8
enhancement piperine
4
solubility
4
piperine solubility
4
solubility solid
4
solid dispersion
4

Similar Publications

Piperine (PRN) is a water-insoluble alkaloidal drug reported for different biological activities. As part of this study, Kollidone VA64 (KLD) and Soluplus (SLP) were used as carriers to develop piperine solid dispersions (PRN SDs) to enhance their solubility. The stability constant of the drug-polymer composition was determined by the phase solubility study.

View Article and Find Full Text PDF

Silymarin (SL) is a water-insoluble flavonoid used in the treatment of different diseases, but its therapeutic activity is limited due to its low solubility. So, in the present study, SL solid dispersions (SDs) were developed using different carriers like Kollidone VA64 (KL), Soluplus (SP), and Poloxamer 188 (PL) by solvent evaporation (SE), microwave irradiation (MI), and freeze-drying (FD) methods. The phase solubility and saturation solubility studies were assessed to estimate the stability constant as well as the carrier effect.

View Article and Find Full Text PDF

Three polymers, polyvinylpyrrolidone (PVP K30), hydroxypropyl methyl cellulose (HPMC E5), and Kollidone VA64 (PVP-VA64), have been assessed for their impact on the nucleation and crystal growth of indomethacin (IND) from supersaturation solutions. PVP was the most effective inhibitor on IND nucleation among three polymers, but the effect of three polymers on inhibiting nucleation is quite limited when the degree of supersaturation S is higher than about 9. Analysis of the nucleation data by classical nucleation theory model generally afforded good data fitting with the model and showed that addition of polymers may affect the crystal/solution interfacial free energy γ and also the pre-exponential kinetic factor.

View Article and Find Full Text PDF