98%
921
2 minutes
20
Larval zebrafish are an appropriate animal and laboratory model for exploring the neural mechanisms underlying cognitive abilities, especially concerning their applicability to human cognition. To replicate the natural habitats of such organisms at the laboratory level, microfluidic platforms are employed as a valuable tool in mimicking the intricate spatiotemporal stimuli together with high-throughput screening. This work investigated the memory capabilities of zebrafish larvae across different developmental stages (5-9 days post-fertilization) by employing sound stimuli within the microfluidic environment. Notably, the sound signal with 1200 Hz frequency was observed to be significantly sensitive among all the considered developmental stages in stimulating the responses. In addition, the impact of the memory enhancer drug methylene blue (MB) was tested, revealing a significant enhancement in cognitive performance compared to controls. Specifically, learning (training) and memory (post-training) were observed to exhibit 2-fold and 20-fold increases, respectively, in MB-exposed larvae. In addition to sound stimuli and memory enhancer drugs, the impact of environmental complexity on cognitive abilities was examined by employing different designs of microchannels, such as series, parallel, and combined configurations. The presented experimental paradigm provides a robust framework for various zebrafish studies, including sensory processing mechanisms, learning capabilities, and potential therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12182284 | PMC |
http://dx.doi.org/10.1063/5.0270298 | DOI Listing |
Pest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFEur J Neurosci
September 2025
The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).
View Article and Find Full Text PDFCogn Psychol
September 2025
Graduate School of Engineering, Kochi University of Technology, Kami, Kochi, Japan. Electronic address:
Prior researches on global-local processing have focused on hierarchical objects in the visual modality, while the real-world involves multisensory interactions. The present study investigated whether the simultaneous presentation of auditory stimuli influences the recognition of visually hierarchical objects. We added four types of auditory stimuli to the traditional visual hierarchical letters paradigm:no sound (visual-only), a pure tone, a spoken letter that was congruent with the required response (response-congruent), or a spoken letter that was incongruent with it (response-incongruent).
View Article and Find Full Text PDFJASA Express Lett
September 2025
Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, Texas 76201,
Misophonia is a condition characterized by intense negative emotional reactions to trigger sounds and related stimuli. In this study, adult listeners (N = 15) with a self-reported history of misophonia symptoms and a control group without misophonia (N = 15) completed listening judgements of recorded misophonia trigger stimuli using a standard scale. Participants also completed an established questionnaire of misophonia symptoms, the Misophonia Questionnaire (MQ).
View Article and Find Full Text PDFNeuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDF