Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: This study was undertaken to develop and validate an automatic, artificial intelligence-enhanced software tool for hippocampal sclerosis (HS) detection, using a variety of standard magnetic resonance imaging (MRI) protocols from different MRI scanners for routine clinical practice.
Methods: First, MRI scans of 36 epilepsy patients with unilateral HS and 36 control patients with epilepsy of other etiologies were analyzed. MRI features, including hippocampal subfield volumes from three-dimensional (3D) magnetization-prepared rapid acquisition gradient echo (MPRAGE) scans and fluid-attenuated inversion recovery (FLAIR) intensities, were calculated. Hippocampal subfield volumes were corrected for total brain volume and z-scored using a dataset of 256 healthy controls. Hippocampal subfield FLAIR intensities were z-scored in relation to each subject's mean cortical FLAIR signal. Additionally, left-right ratios of FLAIR intensities and volume features were obtained. Support vector classifiers were trained on the above features to predict HS presence and laterality. In a second step, the algorithm was validated using two independent, external cohorts, including 118 patients and 116 controls in sum, scanned with different MRI scanners and acquisition protocols.
Results: Classifiers demonstrated high accuracy in HS detection and lateralization, with slight variations depending on the input image availability. The best cross-validation accuracy was achieved using both 3D MPRAGE and 3D FLAIR scans (mean accuracy = 1.0, confidence interval [CI] = .939-1.0). External validation of trained classifiers in two independent cohorts yielded accuracies of .951 (CI = .902-.980) and .889 (CI = .805-.945), respectively. In both validation cohorts, the additional use of FLAIR scans led to significantly better classification performance than the use of MPRAGE data alone (p = .016 and p = .031, respectively). A further model was trained on both validation cohorts and tested on the former training cohort, providing additional evidence for good validation performance. Comparison to a previously published algorithm showed no significant difference in performance (p = 1).
Significance: The method presented achieves accurate automated HS detection using standard clinical MRI protocols. It is robust and flexible and requires no image processing expertise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.18514 | DOI Listing |