A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Correlating pore space morphology with numerically computed soil gas diffusion for structured loam and sand, including stochastic 3D microstructure modeling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biogeochemical soil processes are closely linked to the structure of soil. In particular, nutrient transport depends on diffusivity and permeability within the soil's pore network. A deeper understanding of the relationship between microscopic soil structure and such effective macroscopic properties can be obtained by tomographic imaging combined with a quantitative analysis of soil morphology and numerical simulations of effective macroscopic properties. In a previous work it has been shown that different parametric regression formulas can be used to predict these relations for finely sieved soils of loam and sand. In the present paper, we validate these formulas and further extend their applicability to structured soils. In particular, 3D CT data of a total of six samples, consisting of three loam and three sand samples, are used as the basis for an extensive structural analysis. As expected, the performance of most regression formulas can be improved by specifically adjusting their parameters for the considered soil structures. However, it turns out that some regression formulas based on, e.g., tortuosity which were fitted for finely sieved soils still reliably predict diffusion for structured soils without adjusting their parameters. For additional validation and improvement of the considered regression formulas, artificially generated soil structures can be utilized. Therefore, a method for the generation of such structures via samples drawn from a parametric stochastic 3D microstructure model is outlined which may serve as a basis for further work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181360PMC
http://dx.doi.org/10.1038/s41598-025-05825-0DOI Listing

Publication Analysis

Top Keywords

regression formulas
16
diffusion structured
8
loam sand
8
stochastic microstructure
8
effective macroscopic
8
macroscopic properties
8
finely sieved
8
sieved soils
8
structured soils
8
adjusting parameters
8

Similar Publications