Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The brain extracellular matrix (ECM) regulates myelin repair and regeneration following a demyelinating event by interacting with neuronal progenitors and immune cells. Therefore, generation and characterization of decellularized human brain tissue (DHBT) in regions with distinct neuroregenerative capacities are essential to determine factors modulating the cellular regenerative behavior. We have established an effective decellularization protocol for the human neural stem cell (NSC)-rich subventricular zone (SVZ) as well as, frontal cortex (FC) and white matter (WM), and defined region-specific matrisomes with comparative proteomics. Subsequently, as proof-of-concept, survival and differentiation of NSCs and monocytes within the DHBT were investigated. The proteomic analysis of the DHBT confirmed the retention of matrisome proteins such as COL4A1, FBB, NCAN, ANXA2. Unique to the SVZ were LGI3 and C1QB, while annexins, S100A and TGM2 were found in FC; S100B was exclusive to the WM. NSCs cultured within WM and FC acquired an astrocytic phenotype, but both astrocytic and oligodendrocytic phenotypes were promoted by the SVZ DHBT. Moreover, imaging mass cytometry analysis indicated an anti-inflammatory phenotype differentiation of monocytes seeded on SVZ and WM. Thus, the established model is suitable for investigation of ECM properties and assessment of cell-matrix interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177465PMC
http://dx.doi.org/10.3389/fbioe.2025.1578467DOI Listing

Publication Analysis

Top Keywords

decellularized human
8
human brain
8
brain tissue
8
cell-matrix interactions
8
generation decellularized
4
tissue investigating
4
investigating cell-matrix
4
interactions proof-of-concept
4
proof-of-concept study
4
study brain
4

Similar Publications

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

The advancement of science and technology is an undeniable phenomenon that is progressively transforming all aspects of human life, including scientific, social, humanitarian, and environmental fields, among others. Facial reconstruction surgery has recently gained much attention owing to the incorporation of new technologies, such as bioprinting, regenerative medicine (RM), and artificial intelligence (AI) in surgery. These advancements have led to more innovative, site-specific, and optimal methods of addressing the challenges of facial reconstruction following trauma, congenital malformations, and oncological resections.

View Article and Find Full Text PDF

Effects of dermal-fibroblast-derived ECM and dextran sulfate supplementation on osteoblast differentiation - results of a preliminary in vitro study.

Injury

August 2025

Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:

Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.

View Article and Find Full Text PDF

This study aimed to improve the efficiency of decellularization and enhance the functional properties of vascular grafts to optimize their application in vascular repair. Rabbit abdominal aortas were used as the decellularization target, and ultrasound-assisted decellularization was performed using intermittent ultrasound at 100 W power, 20 kHz frequency, and 4 °C. Rabbit abdominal aortas were subjected to three different decellularization techniques.

View Article and Find Full Text PDF

Background: A decellularized liver scaffold (DLS) is a three-dimensional acellular extracellular matrix created by removing cellular components from liver tissue. Hepatocellular carcinoma (HCC) organoids represent a useful experimental model.

Methods: HCC organoids from patient-derived xenografts (PDX), liver organoids, and HepG2 cells were expanded by cultivation within a murine DLS.

View Article and Find Full Text PDF