Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Neuromorphic computing offers a transformative pathway to overcome the computational and energy challenges faced in deploying robotic localization and navigation systems at the edge. Visual place recognition, a critical component for navigation, is often hampered by the high resource demands of conventional systems, making them unsuitable for small-scale robotic platforms, which still require accurate long-endurance localization. Although neuromorphic approaches offer potential for greater efficiency, real-time edge deployment remains constrained by the complexity of biorealistic networks. To overcome this challenge, fusion of hardware and algorithms is critical when using this specialized computing paradigm. Here, we demonstrate a neuromorphic localization system that performs competitive place recognition in up to 8 kilometers of traversal using models as small as 180 kilobytes with 44,000 parameters while consuming less than 8% of the energy required by conventional methods. Our system, locational encoding with neuromorphic systems (LENS), integrates spiking neural networks, an event-based dynamic vision sensor, and a neuromorphic processor within a single SynSense Speck chip, enabling real-time, energy-efficient localization on a hexapod robot. When compared with a benchmark place recognition method, sum of absolute differences, LENS performs comparably in overall precision. LENS represents an accurate fully neuromorphic localization system capable of large-scale, on-device deployment for energy-efficient robotic place recognition. Neuromorphic computing enables resource-constrained robots to perform energy-efficient, accurate localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.ads3968 | DOI Listing |