A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Morphological traits and machine learning for genetic lineage prediction of two reef-building corals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrating multiple lines of evidence that support molecular taxonomy analysis has proven to be a robust method for species delimitation in scleractinian corals. However, morphology often conflicts with genetic approaches due to high phenotypic plasticity and convergence. Understanding morphological variation among species is crucial to studying coral distribution, life history, ecology, and evolution. Here, we present an application of Random Forest models for coral species identification based on morphological annotation of the corallum and corallites. We show that the integration of molecular and morphological trait analysis can be improved using machine learning. Morphological traits were documented for Porites and Pocillopora coral species that were collected and genotyped through genome-wide, genetical hierarchical clustering, and coalescence analyses for the Tara Pacific Expedition. While Porites only included three tentative species, most Pocillopora species were accounted by included specimens from the western Indian Ocean, tropical Southwestern Pacific, and southeast Polynesia. Two Random Forest models per genus were trained on the morphological annotations using the genetic lineage labels. One model was developed for in-situ image identification and used corallum traits measured from in-situ photographs. Another model for integrative species identification combined corallum and corallite data measured on scanning electron micrographs. Random Forest models outperformed traditional dimension reduction methods like PCA and FAMD followed by k-means and hierarchical clustering by classifying the correct genetic lineage despite morphological clusters overlapping. This machine learning approach is reproducible, cost-effective, and accessible, reducing the need for taxonomic expertise. It can complement molecular and phylogenetic studies and support image identification, highlighting its potential to advance a coral integrative taxonomy workflow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176140PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326095PLOS

Publication Analysis

Top Keywords

machine learning
12
genetic lineage
12
random forest
12
forest models
12
morphological traits
8
coral species
8
species identification
8
hierarchical clustering
8
image identification
8
morphological
7

Similar Publications