98%
921
2 minutes
20
Biomass waste is a promising, cost-effective, and sustainable source of biomass-derived carbon materials (BCMs) because of its high carbon content, renewability, and environmental friendliness. This review discusses the synthesis of BCMs from several organic sources, including plant materials, animal waste, and aquatic organisms. We also examine the efficiency of these materials in removing pollutants such as heavy metals, dyes, and emerging organic contaminants. BCMs have great environmental remediation potential because of their high surface area and porosity. The review discusses essential biomass carbon materials (BCMs) like activated carbon, graphene, carbon nanotubes (CNTs), and biochar, along with their production techniques, including hydrothermal carbonization (HTC), pyrolysis, and microwave-assisted methods. It also explores strategies for modifying BCMs to enhance their adsorption capabilities and effectiveness in tackling water pollution. The review concludes with a discussion of the challenges related to biomass conversion, processing, and commercialization that must be addressed to facilitate using BCMs for environmental purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202500445 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.
Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Research, Collections and Conservation, Environmental Archaeology and Materials Science, National Museum of Denmark, Kongens Lyngby, Denmark.
During the Late Bronze Age (ca. 11th-8th century BCE), far-reaching and extensive trade and exchange networks linked communities across Europe. The area around Seddin in north-western Brandenburg, Germany, has long been considered as at the core of one such networks.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDF