98%
921
2 minutes
20
Pseudomonas aeruginosa is an opportunistically pathogenic bacteria that causes fatal infections and outbreaks in hospital environments. Due to the increasing prevalence of antibiotic-resistant strains of P. aeruginosa, the need for alternative therapies is critical. Bacteriophage therapy is emerging as a promising approach; however, it remains unapproved for clinical use and is hindered by limited understanding of the complex interactions between bacterial cells and phage virions. Mathematical models provide insight into these interactions. Through a system of ordinary differential equations, we successfully capture the dynamics observed between susceptible, infected, and mutated bacterial cells and bacteriophage virions in a microwell setting. Data fitting based on this model produced a set of parameter estimates unique to our experimental observations of a specific phage and P. aeruginosa strain. In translating observed optical density readings into bacterial concentrations, we also found that bacterial debris has a significant impact on optical density, with a lysed bacterium contributing roughly as much to optical density readings as a living cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-025-01478-2 | DOI Listing |
Langmuir
September 2025
Microelectronics & Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400 Johor, Malaysia.
Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.
View Article and Find Full Text PDFACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Physics, Mizoram University, Aizawl-796004, India,.
It is anticipated that wide-bandgap semiconductors (WBGSs) would be useful materials for energy production and storage. A well-synthesized, yet scarcely explored, diamond-like quaternary semiconductor LiZnGeS has been considered for this work. Herein, we have employed two well-known functionals GGA and mGGA within a framework of density functional theory (DFT).
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.
Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.
View Article and Find Full Text PDFNano Lett
September 2025
Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.
The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.
View Article and Find Full Text PDF