Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: Over the past three decades, nanoindentation has continuously evolved and transformed the field of materials mechanical testing. Once highlighted by the groundbreaking Oliver-Pharr method, the utility of nanoindentation has transcended far beyond modulus and hardness measurements. Today, with increasing challenges in developing advanced energy generation and electronics technologies, we face a growing demand for accelerated materials discovery and efficient assessment of mechanical properties that are coupled with modern machine learning-assisted approaches, most of which require robust experimental validation and verification. To this end, nanoindentation finds its unique strength, owing to its small-volume requirement, of fast-probing and providing a mechanistic understanding of various materials. As such, this technique meets the demand for rapid materials assessment, including semiconductors, ceramics, and thin films, which are integral to next-generation energy-efficient and high-power electronic devices. Here, we highlight modern nanoindentation strategies using novel experimental protocols outlined by the use of nanoindentation for characterizing functional structures, dislocation engineering, high-speed nanoindentation mapping, and accelerating materials discovery via thin-film libraries. We demonstrate that nanoindentation can be a powerful tool for probing the fundamental mechanisms of elasticity, plasticity, and fracture over a wide range of microstructures, offering versatile opportunities for the development and transition of functional materials.
Graphical Abstract: Modern strategies for nanoindentation in electronic systems, functional ceramics, heterogeneous structures, and thin films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162717 | PMC |
http://dx.doi.org/10.1557/s43577-025-00923-w | DOI Listing |