Electrical and calcium signaling in plant systemic defense: from local wounds to global responses.

New Phytol

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sessile plants, constrained by their immobile nature in dynamic environments, have evolved sophisticated defense mechanisms to ensure survival. When confronted with threats such as insect feeding or mechanical wounding, plants not only activate localized defense responses at the injury site but also quickly transmit danger signals from the wound to the distal undamaged tissues for the activation of systemic defense signaling, which enables the plant to prepare for the upcoming threats effectively. Emerging evidence highlights the pivotal role of vascular-mediated long-distance transmission of electrical signals and calcium (Ca) waves in coordinating whole-plant defense programs. Recent advances have significantly expanded our understanding of wound-induced systemic signaling, with key genes and signaling molecules identified as central components in these cascades. In this review, we first provide an overview of these key findings and then discuss the mechanisms driving the long-distance transmission of electrical and Ca signals. Furthermore, we explore the roles of wound- and mechanically stimulated electrical and Ca signals in other plant species, contributing to a broader understanding of plant defense responses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.70301DOI Listing

Publication Analysis

Top Keywords

electrical signals
12
systemic defense
8
defense responses
8
long-distance transmission
8
transmission electrical
8
defense
6
electrical
4
electrical calcium
4
signaling
4
calcium signaling
4

Similar Publications

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.

View Article and Find Full Text PDF

Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.

View Article and Find Full Text PDF

Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF