98%
921
2 minutes
20
Background: The treatment of non-small cell lung cancer (NSCLC) patients is correlated with the efficacy of immune checkpoint blockade therapy (ICB) targeting programmed cell death ligand 1 (PD-L1) or its cognate receptor (PD-1) on cancer cells or infiltrating immune cells. Analysis of PD-L1/PD-1 expression in tumor tissue represents a crucial step before PD-L1/PD-1 blocker usage.
Methods: We used directed evolution of protein variants derived from a 13 kDa Myomedin loop-type combinatorial library with 12 randomized amino acid residues to select high-affinity binders of human PD-L1 (hPD-L1). After the ribosome display, individual clones were screened by ELISA. Detailed analysis of binding affinity and kinetics was performed using LigandTracer. The specificity of Myomedins was assessed using fluorescent microscopy on HEK293T-transfected cells and cultured cancer cells in vitro, formalin-fixed paraffin-embedded (FFPE) sections of human tonsils, and FFPE tumor samples of NSCLC patients.
Results: Seven identified PD-L1 binders, called MLE, showed positive staining for hPD-L1 on transfected HEK293T cells and cultured MCF-7 cells. MLE031, MLE105, MLE249, and MLE309 exhibited high affinity to both human and mouse PD-L1-transfected HEK293T cells measured with LigandTracer. The diagnostic potential of MLE variants was tested on human tonsillitis tissue and compared with diagnostic anti-PD-L1 antibody DAKO 28-8 and PD-L1 IHC 22C3 pharmDx antibody. MLE249 and MLE309 exhibited an excellent overlap with diagnostic DAKO 28-8 (Pearson´s coefficient (r) = 0.836 and 0.731, respectively) on human tonsils on which MLE309 exhibited also excellent overlap with diagnostic 22C3 antibody (r = 0.876). Using three NSCLC tissues, MLE249 staining overlaps with 28-8 antibody (r = 0.455-0.883), and MLE309 exhibited overlap with 22C3 antibody (r = 0.534-0.619). Three MLE proteins fused with Fc fragments of rabbit IgG, MLE249-rFc, MLE309-rFc and MLE031-rFc, exhibited very good overlap with anti-PD-L1 antibody 28-8 on tonsil tissue (r = 0.691, 0.610, and 0.667, respectively). Finally, MLE249-rFc, MLE309-rFc and MLE031-rFc exhibited higher sensitivity in comparison to IHC 22C3 antibody using routine immunohistochemistry staining system Ventana, which is one of gold standards for PD-L1 diagnosis.
Conclusions: We demonstrated the development of MLE Myomedins specifically recognizing hPD-L1 that may serve as a refinement tool for clinical PD-L1 detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166602 | PMC |
http://dx.doi.org/10.1186/s12967-025-06699-6 | DOI Listing |
J Transl Med
June 2025
Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, Vestec, 252 50, Czech Republic.
Background: The treatment of non-small cell lung cancer (NSCLC) patients is correlated with the efficacy of immune checkpoint blockade therapy (ICB) targeting programmed cell death ligand 1 (PD-L1) or its cognate receptor (PD-1) on cancer cells or infiltrating immune cells. Analysis of PD-L1/PD-1 expression in tumor tissue represents a crucial step before PD-L1/PD-1 blocker usage.
Methods: We used directed evolution of protein variants derived from a 13 kDa Myomedin loop-type combinatorial library with 12 randomized amino acid residues to select high-affinity binders of human PD-L1 (hPD-L1).