Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food. This process is dependent on a single pair of Lateral Horn Leucokinin (LHLK) neurons, that secrete the neuropeptide Leucokinin. These neurons signal to insulin producing cells and suppress sleep under periods of starvation. The identification of individual neurons that modulate sleep-metabolism interactions provides the opportunity to examine the cellular changes associated with sleep modulation. Here, we use single-cell sequencing of LHLK neurons to examine the transcriptional responses to starvation. We validate that a targeted single-cell sequencing approach selectively isolates RNA from individual LHLK neurons. Single-cell CEL-Seq comparisons of LHLK neurons between fed and 24-h starved flies identified 24 genes that are differentially expressed in accordance with starvation state. In total, 12 upregulated genes and 12 downregulated genes were identified. Gene-ontology analysis showed an enrichment for Attacins, a family of antimicrobial peptides, along with a number of transcripts with diverse roles in regulating cellular function. Targeted knockdown of differentially expressed genes identified multiple genes that function within LHLK neurons to regulate sleep-metabolism interactions. Functionally validated genes include an essential role for the E3 ubiquitin ligase insomniac, the sorbitol dehydrogenase Sodh1, as well as AttacinC and AttacinB in starvation-induced sleep suppression. Taken together, these findings provide a pipeline for identifying novel regulators of sleep-metabolism interactions within individual neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239624PMC
http://dx.doi.org/10.1093/g3journal/jkaf079DOI Listing

Publication Analysis

Top Keywords

lhlk neurons
20
sleep-metabolism interactions
12
sleep
8
neurons
8
individual neurons
8
single-cell sequencing
8
differentially expressed
8
genes identified
8
genes
6
lhlk
5

Similar Publications

Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food.

View Article and Find Full Text PDF

Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, , suppresses sleep in response to acute food deprivation, presumably to forage for food.

View Article and Find Full Text PDF

Dysregulation of sleep and feeding has widespread health consequences. Despite extensive epidemiological evidence for interactions between sleep and metabolic function, little is known about the neural or molecular basis underlying the integration of these processes. D.

View Article and Find Full Text PDF

Origin and specification of the brain leucokinergic neurons of Drosophila: similarities to and differences from abdominal leucokinergic neurons.

Dev Dyn

March 2014

Development and Differentiation Department, Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain; Biology Department Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.

Background: The Drosophila central nervous system contains many types of neurons that are derived from a limited number of progenitors as evidenced in the ventral ganglion. The situation is much more complex in the developing brain. The main neuronal structures in the adult brain are generated in the larval neurogenesis, although the basic neuropil structures are already laid down during embryogenesis.

View Article and Find Full Text PDF

Previous studies have revealed leucokinin (LK) expression in the brain and ventral ganglion of Drosophila CNS. One pair of protocerebrum neurons located in the lateral horn area (LHLK) surrounds the peduncles of the mushroom bodies while two pairs of subesophageal neurons (SELKs) project extended processes to the tritocerebrum and through a cervical connection to the ventral ganglion. There, axons of eight or nine pairs of abdominal (ABLK) neurons leave the CNS through the abdominal nerves and processes connecting each other ipsilaterally and contralaterally.

View Article and Find Full Text PDF