A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhanced Heat Dissipation and Reduced Power Consumption in Electronics Using 2D Hexagonal Boron Nitride. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Miniaturization of electronic components has led to overheating, increased power consumption, and early circuit failures. Conventional heat dissipation methods are becoming inadequate due to limited surface area and higher short-circuit risks. This study presents a fast, low-cost, and scalable technique using 2D hexagonal boron nitride (hBN) coatings to enhance heat dissipation in commercial electronics. Inexpensive hBN layers, applied by drop casting or spray coating, boost thermal conductivity at IC surfaces from below 0.3 to 260 W m K, resulting in over double the heat flux and convective heat transfer. This significantly reduces operating temperatures and power consumption, as demonstrated by a 17.4% reduction in a coated audio amplifier circuit board. Density functional theory indicates enhanced interaction between 2D hBN and packaging materials as a key factor. This approach promises substantial energy and cost savings for large-scale electronics without altering existing manufacturing processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202502007DOI Listing

Publication Analysis

Top Keywords

heat dissipation
12
power consumption
12
hexagonal boron
8
boron nitride
8
enhanced heat
4
dissipation reduced
4
reduced power
4
consumption electronics
4
electronics hexagonal
4
nitride miniaturization
4

Similar Publications