Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Miniaturization of electronic components has led to overheating, increased power consumption, and early circuit failures. Conventional heat dissipation methods are becoming inadequate due to limited surface area and higher short-circuit risks. This study presents a fast, low-cost, and scalable technique using 2D hexagonal boron nitride (hBN) coatings to enhance heat dissipation in commercial electronics. Inexpensive hBN layers, applied by drop casting or spray coating, boost thermal conductivity at IC surfaces from below 0.3 to 260 W m K, resulting in over double the heat flux and convective heat transfer. This significantly reduces operating temperatures and power consumption, as demonstrated by a 17.4% reduction in a coated audio amplifier circuit board. Density functional theory indicates enhanced interaction between 2D hBN and packaging materials as a key factor. This approach promises substantial energy and cost savings for large-scale electronics without altering existing manufacturing processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202502007 | DOI Listing |