Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study aimed to investigate the regulatory effects of nitrogen (N) application rate and plant density on panicle type index (PTI), yield, grain filling characteristics, and their correlations. The low-PTI rice variety DP128 (PTI = 0.15) was cultivated under field conditions at four N supply levels (0 (N), 140 (N), 200 (N), and 260 (N) kg∙ha), and two plant densities (166,755 and 333,495 plants∙ha). Results showed that N application rate, planting density, and their interactions significantly influenced yield, PTI, grain number in middle/lower secondary branches, and total grain number in lower secondary branches of rice DP128. Parameters trends were consistent over two years. Under ND, the total grain number in lower secondary branches was minimized, while other indices were maximized. Further analysis indicates that under high PTI conditions, the maximum grain-filling rate (), mean grain-filling rate (), sucrose content, ABA/ETH ratio, and starch content in inferior grains (IGs) were all significantly elevated. Correlation analysis indicated PTI was positively correlated with yield, grain number in middle/lower secondary branches, IGs-, and IGs- and negatively correlated with the total grain number in the lower secondary branches. In summary, increasing PTI can be achieved by optimizing the distribution of secondary branch grains along the panicle axis, decreasing the number of grains on the lower secondary branches, mitigating the competition for filling materials among inferior grains, improving grain-filling capacity and, ultimately, increasing rice yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157969 | PMC |
http://dx.doi.org/10.3390/plants14111690 | DOI Listing |