A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial Intelligence's Role in Improving Adverse Pregnancy Outcomes: A Scoping Review and Consideration of Ethical Issues. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Adverse pregnancy outcomes (APOs), which include hypertensive disorders of pregnancy (gestational hypertension, preeclampsia, and related disorders), gestational diabetes, preterm birth, fetal growth restriction, low birth weight, small-for-gestational-age newborn, placental abruption, and stillbirth, are health risks for pregnant women that can have fatal outcomes. This study's aim is to investigate the usefulness of artificial intelligence (AI) in improving these outcomes and includes changes in the utilization of ultrasound, continuous monitoring, and an earlier prediction of complications, as well as being able to individualize processes and support clinical decision-making. This study evaluates the use of AI in improving at least one APO. : PubMed, Web of Science, and Scopus databases were searched and limited to the English language, humans, and between 2020 and 2024. This scoping review included peer-reviewed articles across any study design. However, systematic reviews, meta-analyses, unpublished studies, and grey literature sources (e.g., reports and conference abstracts) were excluded. Studies were eligible for inclusion if they described the use of AI in improving APOs and the associated ethical issues. : Five studies met the inclusion criteria and were included in this scoping review. Although this review initially aimed to evaluate AI's role across a wide range of APOs, including placental abruption and stillbirth, the five selected studies focused primarily on preterm birth, hypertensive disorders of pregnancy, and gestational diabetes. None of the included studies addressed placental abruption or stillbirth directly. The studies primarily utilized machine-learning models, including extreme gradient boosting (XGBoost) and random forest (RF), showing promising results in enhancing prenatal care and supporting clinical decision-making. Ethical considerations, including algorithmic bias, transparency, and the need for regulatory oversight, were highlighted as critical challenges. : The application of these tools can improve prenatal care by predicting obstetric complications, but ethics and transparency are pivotal. Empathy and humanization in healthcare must remain fundamental, and flexible training mechanisms are needed to keep up with rapid innovation. AI offers an opportunity to support, not replace, the doctor-patient relationship and must be subject to strict legislation if it is to be used safely and fairly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156818PMC
http://dx.doi.org/10.3390/jcm14113860DOI Listing

Publication Analysis

Top Keywords

scoping review
12
placental abruption
12
abruption stillbirth
12
adverse pregnancy
8
pregnancy outcomes
8
ethical issues
8
hypertensive disorders
8
disorders pregnancy
8
pregnancy gestational
8
gestational diabetes
8

Similar Publications