Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Iodine-based batteries have emerged prominently in grid energy storage due to their cost-effectiveness and versatility. However, traditional iodine cathodes featuring I/I mechanisms struggle to meet the current demands for high-energy-density batteries, considering their limited specific capacity and voltage. Here, we discover a unique eight-electron-transfer asymmetric three-stage conversion of iodine facilitated by the formation of interhalogens. This mechanism involves a three-stage sequential charging from I/I, to I/ICl, and finally ICl/ICl, with the prolonged third charging plateau significantly enhancing the specific capacity to 809.2 mAh g of I. During discharge, the cathode undergoes highly reversible but asymmetric conversions, with ICl as the intermediate. The mechanism is achieved by a regulated "chloride-in-acid" electrolyte with interlocking H-bond structures, which effectively reduces the free water content and stabilizes the interhalogen species. The iodine-hydrogen gas battery demonstrates stable cycling performance with an average Coulombic efficiency exceeding 98.2% for over 1000 cycles and an increased voltage from 0.47 to 0.75 V compared with the I/I mechanism, which can be further enhanced to 1.43 V by utilizing zinc anode. This study broadens the application of interhalogen chemistry into conversion reactions, presenting great prospects for high-energy-density aqueous batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c03581 | DOI Listing |