Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Structural elucidation using untargeted tandem mass spectrometry (MS/MS) has played a critical role in advancing scientific discovery [1, 2]. However, differentiating molecular fragmentation patterns between isobaric structures remains a prominent challenge in metabolomics [3-10], drug discovery [11-13], and reaction screening [14-17], presenting a significant barrier to the cost-effective and rapid identification of unknown molecular structures. Here, we present a geometric deep learning model, ICEBERG, that simulates collision-induced dissociation in mass spectrometry to generate chemically plausible fragments and their relative intensities with awareness of collision energies and polarities. We utilize ICEBERG predictions to facilitate structure elucidation by ranking a set of candidate structures based on the similarity between their predicted MS/MS spectra and an experimental MS/MS spectrum of interest. This integrated elucidation pipeline enables state-of-the-art performance in compound annotation, with 40% top-1 accuracy on the NIST'20 [M+H] adduct subset and with 92% of correct structures appearing in the top ten predictions in the same dataset. We demonstrate several real-world case studies, including identifying clinical biomarkers of depression and tuberculous meningitis, annotating an aqueous abiotic degradation product of the pesticide thiophanate methyl, disambiguating isobaric products in pooled reaction screening, and annotating biosynthetic pathways in . Overall, this deep learning-based, chemically-interpretable paradigm for structural elucidation enables rapid molecular annotation from complex mixtures, driving discoveries across diverse scientific domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154671PMC
http://dx.doi.org/10.1101/2025.05.28.656653DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
structure elucidation
8
tandem mass
8
structural elucidation
8
reaction screening
8
elucidation
5
neural spectral
4
spectral prediction
4
prediction structure
4
elucidation tandem
4

Similar Publications

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

RAB25/GCN1 Signaling Promotes ER Stress to Mediate Alcohol-associated Liver Disease Progression.

Clin Mol Hepatol

September 2025

Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.

Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.

View Article and Find Full Text PDF

Functional analysis of secreted tissue inhibitor of metalloproteinases-1 from adult human neural stem cells (ahNSCs) for regeneration and neuroprotection.

BMB Rep

September 2025

Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health

The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.

View Article and Find Full Text PDF

Electrophysiological identification of 4 macrocyclic lactones as female-specific volatiles of the agarwood tree defoliator Heortia vitessoides (Lepidoptera: Crambidae).

Insect Sci

September 2025

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.

Agarwood trees (Aquilaria spp.) are widely cultivated in tropical Asia for their valuable resin. The defoliator moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a devastating pest that significantly limits the productivity of agarwood plantations.

View Article and Find Full Text PDF

Polyethylene glycols (PEGs) are amphiphilic polymers that are used extensively in consumer products and PEGylated biotherapeutics. Although PEGs are considered biologically inert with a low toxicity, anti-PEG antibodies have been detected in patients receiving treatment with PEGylated biotherapeutics as well as in healthy individuals. Despite continual exposure in daily life, the prevalence of PEGs within the general population remains unclear.

View Article and Find Full Text PDF