Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
G protein-coupled receptors (GPCRs) are important therapeutic drug targets for a wide range of diseases. Upon activation, GPCRs can initiate several signaling pathways, each with unique therapeutic implications. Therefore, understanding how drugs selectively engage specific signaling pathways becomes paramount. However, achieving this selectivity remains highly challenging. To unravel the underlying multifaceted mechanisms, we integrate systematic mutagenesis of the CBR, comprehensive profiling of G and β-arrestin1 engagements and computer simulations to track the effects of mutations on receptor dynamics. Our research reveals multiple triggers within a complex allosteric communication network (ACN) that converge to preferential CBR coupling by modulating evolutionarily conserved motifs. Utilizing network path analysis, we find that potent triggers are typically highly connected nodes and are located near regions of high information transmission within the ACN. Our insights highlight the complexity of GPCR signaling and provide a framework for the rational design of drug candidates tailored to evoke specific functional responses, ultimately enhancing the precision and efficacy of therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159191 | PMC |
http://dx.doi.org/10.1038/s41467-025-60003-0 | DOI Listing |