Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heat shock protein 90 (Hsp90) is a crucial molecular chaperone responsible for the maturation and stabilization of a wide range of client proteins, many of which are key drivers of oncogenic signaling. While traditional Hsp90 inhibitors targeting its ATPase activity have demonstrated antitumor potential, their clinical progress has been limited by issues such as low selectivity, toxicity, and the induction of cytoprotective heat shock responses. An alternative strategy focuses on disrupting the specific protein-protein interaction between Hsp90 and its kinase-specific co-chaperone, cell division cycle 37 (Cdc37), thereby selectively destabilizing oncogenic kinases without broadly impairing chaperone function. This review discusses the structural insights into the Hsp90-Cdc37 interface, recent advances in the discovery of small molecule inhibitors, peptides, peptidomimetics, and natural products such as celastrol, platycodin D, and withaferin A that effectively disrupt this interaction. Mechanistic studies reveal that disruption leads to targeted degradation of kinase clients, inhibition of key survival pathways including AKT and ERK signaling, induction of apoptosis, and sensitization to other therapeutic agents, all while minimizing activation of the heat shock response. Despite challenges related to targeting dynamic PPI surfaces, optimizing drug-like properties, and validating clinical biomarkers, the therapeutic advantages of this strategy are significant. Hsp90-Cdc37 disruptors represent a promising frontier in precision oncology, offering a refined, selective, and less toxic approach to targeting cancer cell survival networks. Continued multidisciplinary research is expected to drive these agents toward successful clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147015PMC
http://dx.doi.org/10.1039/d5ra03137kDOI Listing

Publication Analysis

Top Keywords

heat shock
12
oncogenic kinases
8
disrupting hsp90-cdc37
4
hsp90-cdc37 axis
4
axis selective
4
selective strategy
4
targeting
4
strategy targeting
4
targeting oncogenic
4
kinases cancer
4

Similar Publications

Genetic variants in HSP40 co-chaperones modulate ischemic heart disease risk.

Mol Biol Rep

September 2025

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.

Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.

Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

Background And Aim: Indonesia's indigenous Kacang goat population is in decline, posing a threat to food security and genetic diversity. maturation and cryopreservation techniques are key strategies for genetic conservation. However, heat shock stress during cryopreservation can compromise oocyte viability.

View Article and Find Full Text PDF

A heat tolerance test (HTT) can aid in return-to-play decision making following exertional heat stroke (EHS). The HTT uses rectal temperature (T, >38.5°C) and heart rate thresholds (HR; >150 bpm) to identify "heat intolerance.

View Article and Find Full Text PDF

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF