Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sarcasm is particularly notorious towards mental health, and thus it is quite essential for early identification of depressive indicators. This paper introduces the Hybrid Ensemble Deep Learning model as novel for the task of the detection of sarcasm task, targeting the weaknesses which were found in traditional approaches of SVC, DT, RF, and LR by using unique combinations of CNN, LSTM, and GRU to capture the sarcasm patterns that appear fine feature representation and enhanced robustness and accuracy. Our model uniquely integrates the architectures of CNN, LSTM, and GRU into one framework for capturing more complex patterns in feature representation, accuracy, and robustness. We tested it on a news headline dataset; HEDL gained 84 % accuracy along with marked reduction in false positives compared to baseline models, which improved the accuracy as well as the recall. Results of the experiment do support that the HEDL model is indeed much more accurate and reliable sarcastic detection methodology; it can have applications such as monitoring mental health or analysing sentiment.•Proposed the Hybrid Ensemble Deep Learning Algorithm (HEDL) for text data.•The proposed model outperforms traditional models in cognitive skill impairment detection.•Demonstrated scalability for diverse healthcare datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148620 | PMC |
http://dx.doi.org/10.1016/j.mex.2025.103370 | DOI Listing |