Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rift Valley fever (RVF) is a vector-borne, zoonotic infectious disease with a proven history of morbidity and mortality in both humans and animals. Rift Valley fever virus (RVFV) is categorized as a high-priority biothreat agent by the Centers for Disease Control and Prevention and poses a serious national threat due to its ease of dissemination and potential for social disruption. RVF often presents as a febrile disease without specific symptoms, making early-stage detection particularly challenging. As such, it is critical that rapid, sensitive, and specific diagnostics are available for the detection of RVFV. While lateral flow immunoassays (LFIs) have been developed and validated for point-of-care (POC) diagnostics, vertical flow immunoassays (VFIs) provide enhanced analytical sensitivity and are equally suitable for POC use. In this study, we developed a VFI system for the detection of RVFV, achieving a limit of detection of 0.78 ng/mL, which is a 2.5-fold increase in analytical sensitivity compared to an LFI prototype. Furthermore, minimal cross-reactivity was demonstrated when performing the assay with target analytes of other high-priority biothreats and one other common viral nucleoprotein. This high-sensitivity VFI has the potential to prove useful for the detection of RVFV and other high-priority biothreat agents at the POC.IMPORTANCEIn this study, we have developed a rapid, sensitive vertical flow immunoassay (VFI) for the detection of Rift Valley fever virus (RVFV) in spiked human serum. The prototype diagnostic described in this research was shown to be more sensitive than traditional methods, such as lateral flow dipstick tests. Moreover, the VFI is readily deployable at the point of care in resource-limited settings. The ability of the described diagnostic to accurately and rapidly detect RVFV in samples could expedite the delivery of life-saving care and thus improve patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210913PMC
http://dx.doi.org/10.1128/spectrum.00341-25DOI Listing

Publication Analysis

Top Keywords

rift valley
16
valley fever
16
vertical flow
12
fever virus
12
detection rvfv
12
flow immunoassay
8
detection rift
8
virus rvfv
8
high-priority biothreat
8
rapid sensitive
8

Similar Publications

Unlabelled: Oropouche fever is a debilitating disease caused by Oropouche virus (OROV), an arthropod-borne member of the Peribunyaviridae family. Despite its public health significance, the molecular mechanisms driving OROV pathogenesis remain poorly understood. In other bunyaviruses, the nonstructural NSs protein encoded by the small (S) genome segment acts as a major virulence factor.

View Article and Find Full Text PDF

Unrelated pathogens, including viruses and bacteria, use a common short linear motif (SLiM) to interact with cellular kinases of the RSK (p90 S6 ribosomal kinase) family. Such a "DDVF" (D/E-D/E-V-F) SLiM occurs in the leader (L) protein encoded by picornaviruses of the genus , including Theiler's murine encephalomyelitis virus (TMEV), Boone cardiovirus (BCV), and Encephalomyocarditis virus (EMCV). The L-RSK complex is targeted to the nuclear pore, where RSK triggers FG-nucleoporins hyperphosphorylation, thereby causing nucleocytoplasmic trafficking disruption.

View Article and Find Full Text PDF

Background: Little is documented on key community-based One Health (OH) approach implementation, pro-activeness and effectiveness of interactions and strategies against Mpox outbreak public health emergency in international concern (PHEIC) in various African countries in order to stamp out the persisting Mpox outbreak threat and burden. Prioritizing critical community-based interventions and lessons learned from previous COVID-19, Mpox, Ebola, COVID-19, Rift Valley Fever and Marburg virus outbreaks revealed critical shortcomings in funding, surveillance, and community engagement that plague public health initiatives across the continent. The article provides critical insights and benefits of community-based One Health approaches implementation against Mpox outbreak management in Africa.

View Article and Find Full Text PDF

Rift Valley fever epidemiology: shifting the paradigm and rethinking research priorities.

Lancet Planet Health

September 2025

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

Rift Valley fever (RVF), a zoonotic mosquito-borne viral disease with erratic occurrence and complex epidemiology, results in substantial costs to veterinary and public health and national economies. Since 1985, RVF virus (RVFV) epidemiology has focused on epidemics triggered by flood-induced emergence of transovarially infected mosquitoes, following an interepidemic period during which RVFV persists primarily in floodwater Aedes spp mosquito eggs, with potential for low-level interepidemic circulation. In this Personal View, we challenge this classic framework of RVFV epidemiology, presenting instead a spectrum of RVFV dynamics ranging from epidemic to hyperendemic.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) causes mild to severe disease in livestock and humans. It was first identified in 1931 during an epizootic in Kenya and has spread across Africa and into the Middle East. Hematopoietic cells are one of the major targets of RVFV ; however, their contribution to RVFV pathogenesis remains poorly understood.

View Article and Find Full Text PDF