98%
921
2 minutes
20
This dataset presents comprehensive spectroscopic and chromatographic profiling of 27 e-liquid samples including commercial formulations, a booster, and a nicotine solution (the e-liquids were collected in Ampang Jaya, Malaysia before April 2023). Fourier-transform infrared (FTIR) spectroscopy was performed across the near-, mid-, and far-infrared ranges (6000-80 cm), generating unique transmittance spectra for each sample. These spectra revealed vibrational bands characteristic of nicotine, propylene glycol, vegetable glycerine, and various additives, supporting rapid qualitative fingerprinting and comparison through OPUS software. H nuclear magnetic resonance (NMR) spectroscopy, conducted using a 600 MHz Bruker spectrometer with cryoprobe, enabled molecular-level identification of sample matrices. Signals from nicotine, propylene glycol, vegetable glycerine, and flavourings were resolved, with spectral expansion in the region of 5.5-10.5 ppm highlighting proton signals that differentiate nicotine forms and concentrations. Meanwhile, gas chromatography-mass spectrometry (GC-MS) analysis of all samples provided compound identification, detecting over 30 volatile compounds per sample including nicotine, esters, aldehydes, and nicotine-related degradation products. The results, available as chromatograms and tabulated peak profiles, highlight the presence of nicotine (including nicotine-N'-oxide), ethyl maltol, vanillin, and prohibited or potentially harmful compounds such as benzaldehyde derivatives. Collectively, these datasets offer a robust foundation for regulatory of nicotine in Malaysia, compositional fingerprinting, and substances screening of e-liquids using FTIR, GC-MS, and NMR as complementary tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142342 | PMC |
http://dx.doi.org/10.1016/j.dib.2025.111591 | DOI Listing |
Indian J Nucl Med
August 2025
Molecular Cyclotrons Pvt. Ltd., Molecular Group of Companies, Ernakulam, Kerala, India.
Purpose Of The Study: 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl-β-D-mannopyranose (mannose triflate), the precursor used for the synthesis of [F] Fluorodeoxyglucose ([F] FDG) is imported from a few commercial suppliers abroad. As part of self-reliance, a reliable synthesis and characterization of mannose triflate has been developed, details of which are reported in this paper.
Materials And Methods: Synthesis of 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl-β-D-mannopyranose (Mannose triflate) carried by Triflation of 1,3,4,6-Tetra-O-acetyl-β-D-mannopyranose with Tf2O-pyridine under argon atmosphere for 6 h.
Chem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFChemistry
September 2025
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
Nucleic acid-based therapeutics, such as oncolytic virotherapy or gene therapy, would benefit greatly from a reporter gene that induces endogenous production of a protein biomarker to noninvasively track the delivery, persistence, and spread with imaging. Several chemical exchange saturation transfer (CEST) reporter proteins detectable by magnetic resonance imaging (MRI) have been demonstrated to have high sensitivity. However, to date none can provide strong CEST contrast at a distinct resonance from that of endogenous proteins, limiting their specificity.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
August 2025
Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA. Electronic address:
Quadrupolar NMR crystallography guided crystal structure prediction (QNMRX-CSP) is a method for determining the crystal structures of organic solids. To date, our two previous QNMRX-CSP studies have relied upon on Cl solid-state NMR (SSNMR) spectroscopy, powder X-ray diffraction (PXRD), Monte-Carlo simulated annealing (MC-SA), and dispersion-corrected density functional theory (DFT-D2∗) calculations for the determination of crystal structures for organic HCl salts with known crystal structures, in order to benchmark the method and subject it to blind tests. Herein, we apply QNMRX-CSP for the de novo crystal structure determination of L-alaninamide HCl (L-Ala-NH), for which no crystal structure has been reported, using Cl SSNMR and PXRD data for structural prediction and refinement, along with C and N SSNMR data for subsequent structural validation.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
September 2025
From the Department of Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.
View Article and Find Full Text PDF