Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mandibular reconstruction to restore mandibular continuity often relies on patient-specific implants and virtual surgical planning, but current implant designs rarely consider individual biomechanical demands, which are critical for preventing complications such as stress shielding, screw loosening, and implant failure. The inclusion of patient-specific masticatory muscle parameters such as cross-sectional area, vectors, and volume could improve implant success, but manual segmentation of these parameters is time-consuming, limiting large-scale analyses. In this study, a deep learning model was trained for automatic segmentation of eight masticatory muscles on MRI images. Forty T1-weighted MRI scans were segmented manually or via pseudo-labelling for training. Training employed 5-fold cross-validation over 1000 epochs per fold and testing was done on 10 manually segmented scans. The model achieved a mean Dice similarity coefficient (DSC) of 0.88, intersection over union (IoU) of 0.79, precision of 0.87, and recall of 0.89, demonstrating high segmentation accuracy. These results indicate the feasibility of large-scale, reproducible analyses of muscle volumes, directions, and estimated forces. By integrating these parameters into implant design and surgical planning, this method offers a step forward in developing personalized surgical strategies that could improve postoperative outcomes in mandibular reconstruction. This brings the field closer to truly individualized patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijom.2025.05.008 | DOI Listing |