98%
921
2 minutes
20
Accurate identification of sleep stages and disorders is crucial for maintaining health, preventing chronic conditions, and improving diagnosis and treatment. Direct respiratory measurements, as key biomarkers, are missing in traditional wrist- or finger-worn wearables, which thus limit their precision in detection of sleep stages and sleep disorders. By contrast, this work introduces a simple, multimodal, skin-integrated, energy-efficient mechanoacoustic sensor capable of synchronized cardiac and respiratory measurements. The mechanical design enhances sensitivity and durability, enabling continuous, wireless monitoring of essential vital signs (respiration rate, heart rate and corresponding variability, temperature) and various physical activities. Systematic physiology-based analytics involving explainable machine learning allows both precise sleep characterization and transparent tracking of each factor's contribution, demonstrating the dominance of respiration, as validated through a diverse range of human subjects, both healthy and with sleep disorders. This methodology enables cost-effective, clinical-quality sleep tracking with minimal user effort, suitable for home and clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168010 | PMC |
http://dx.doi.org/10.1073/pnas.2501220122 | DOI Listing |
J Integr Neurosci
August 2025
Neurological Institute of Jiangxi Province and Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, and Xiangya Hospital of Central South University at Jiangxi, 330038 Nanchang, Jiangxi, China.
Sleep paralysis, colloquially known as "ghost pressing" is a state of momentary bodily immobilization occurring either at the onset of sleep or upon awakening. It is characterized by atonia during rapid eye movement (REM) sleep that continues into wakefulness, causing patients to become temporarily unable to talk or move but possessing full consciousness and awareness of their surroundings. Sleep paralysis is listed in the International Classification of Sleep Disorders, 3rd Edition (ICSD-3) as a parasomnia occurring during REM sleep that be classified as either isolated or narcolepsy-associated.
View Article and Find Full Text PDFAI Neurosci
June 2025
Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Background: This study introduces instantaneous frequency (IF) analysis as a novel method for characterizing dynamic brain causal networks from functional magnetic resonance imaging blood-oxygen-level-dependent signals.
Methods: Effective connectivity, estimated using dynamic causal modeling, is analyzed to derive IF sequences, with the average IF across brain regions serving as a potential biomarker for global network oscillatory behavior.
Results: Analysis of data from the Alzheimer's Disease (AD) Neuroimaging Initiative, Open Access Series of Imaging Studies, and Human Connectome Project demonstrates the method's efficacy in distinguishing between clinical and demographic groups, such as cognitive decline stages (e.
Nihon Eiseigaku Zasshi
September 2025
Department of Hygiene, Public Health and Preventive Medicine, Showa Medical University School of Medicine, Tokyo, Japan.
Objective: In this study, we aimed to examine the relationship between the Eating Assessment Tool-10 (EAT10) score, a screening index for dysphagia, and the Epworth Sleepiness Scale (ESS) score, which evaluates daytime sleepiness in Japanese workers.
Method: A cross-sectional study of 496 workers (454 men and 42 women) at two business locations in Japan was conducted from November 2021 to June 2022. Dysphagia was assessed using the score of EAT10, a self-administered questionnaire.
Neuropsychologia
September 2025
Department of Experimental Psychology and Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United-Kingdom. Electronic address:
Models of memory consolidation propose that newly acquired memory traces undergo reorganisation during sleep. To test this idea, we recorded high-density electroencephalography (EEG) during an evening session of word-image learning followed by immediate (pre-sleep) and delayed (post-sleep) recall. Polysomnography was employed throughout the intervening night, capturing time spent in different sleep stages.
View Article and Find Full Text PDFNeuroimage
September 2025
UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, INSERM, Sorbonne Université, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département R3S, Paris, France. Electronic address:
Background: Neural respiratory drive (NRD) is a clinically relevant biomarker in patients with chronic obstructive pulmonary disease (COPD). However, its analysis is challenging due to several technical considerations, including the need to obtain a stable recording over a short time period. However, a short recording duration may be inadequate to comprehensively record clinically relevant information, particularly during sleep, because NRD varies across sleep stages and over time.
View Article and Find Full Text PDF