Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy defined by aberrant clonal expansion of abnormal myeloid progenitor cells. Characterized by morphological, molecular, and genetic alterations, AML encompasses multiple distinct subtypes that would exhibit subtype-specific responses to treatment and prognosis, underscoring the critical need of accurately identifying AML subtypes for effective clinical management and tailored therapeutic approaches. Traditional wet lab approaches such as immunophenotyping, cytogenetic analysis, morphological analysis, or molecular profiling to identify AML subtypes are labor-intensive, costly, and time-consuming. To address these challenges, we propose , a novel attention-based deep learning framework for accurately categorizing AML subtypes based on transcriptomic profiling only. Benchmarking tests based on 1,661 AML patients suggested that AttentionAML outperformed state-of-the-art methods across all evaluated metrics (accuracy: 0.96, precision: 0.96, recall of 0.96, F1-score: 0.96, and Matthews correlation coefficient: 0.96). Furthermore, we also demonstrated the superiority of AttentionAML over conventional approaches in terms of AML patient clustering visualization and subtype-specific gene marker characterization. We believe AttentionAML will bring remarkable positive impacts on downstream AML risk stratification and personalized treatment design. To enhance its impact, a user-friendly Python package implementing AttentionAML is publicly available at https://github.com/wan-mlab/AttentionAML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139891PMC
http://dx.doi.org/10.1101/2025.05.20.655179DOI Listing

Publication Analysis

Top Keywords

aml subtypes
12
attention-based deep
8
deep learning
8
learning framework
8
acute myeloid
8
myeloid leukemia
8
aml
8
attentionaml
5
096
5
attentionaml attention-based
4

Similar Publications

Pediatric acute myeloid leukemia (pAML) is a heterogeneous malignancy driven by diverse cytogenetic mutations. While identification of cytogenetic lesions improved risk stratification, prognostication remains inadequate with 30% of standard-risk patients experiencing relapse within 5 years. To deeply characterize pAML heterogeneity and identify poor outcome-associated blast cell profiles, we performed an analysis on 708,285 cells from 164 bone marrow biopsies of 95 patients and 11 healthy controls.

View Article and Find Full Text PDF

At present there is no metabolic characterization of acute promyelocytic leukemia (APL). Pathognomonic of APL, PML::RARα fusion protein rewires metabolic pathways to feed anabolic tumor cell's growth. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO)-based therapies render APL the most curable subtype of AML, yet approximately 1% of cases are resistant and 5% relapse.

View Article and Find Full Text PDF

Background: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.

Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.

View Article and Find Full Text PDF

Background: This study aimed to identify the diagnostic and prognostic ability of serum miR-411-3p in patients with acute myeloid leukemia (AML).

Methods: Blood samples were collected from 60 AML patients and 60 healthy controls to measure serum miR-411-3p and thereafter discuss its potential clinical value.

Results: Serum miR-411-3p was decreased in AML patients and was even lower in those with M4/M5 subtypes or high white blood cell count or adverse cytogenetic risk.

View Article and Find Full Text PDF

Background: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.

Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.

Results: The patient exhibited morphological features of acute leukemia in the bone marrow.

View Article and Find Full Text PDF